A picture is worth a thousand words…or more

https://commons.wikimedia.org/wiki/File:20090211_thousand_words-01_cropped.jpg

“Use a picture. It’s worth a thousand words.” This timeless expression first appeared in a 1911 Syracuse Post Standard newspaper article. If you ask Mohamad Elgendi, he’ll say it’s more like 10000 words, based on how fast our mind processes words vs. images. Although true for almost everything, this phrase is becoming even more important in the sciences where data visualization is a necessity for clearly communicating complex and large data sets.

The concept of data visualization is simple: it is the representation of data in a graphical or pictorial format. Creating effective data visualizations, however, is quite difficult. Scientists are often tasked with this challenge every day, whether by presenting their work to peers or to the general public through written and oral forms of communication. Data visualizations play a huge role in all of these outputs, so scientists should be pretty good at it, right?

Most scientists would probably say they are decent at preparing figures and graphics for someone that is within their field of study. Beyond just the typical representations of data like bar plots, scatter plots, pie charts, and line graphs, different fields within the life sciences have created various types of plots for representing certain data. For example, protein sequence conservation is sometimes depicted in “sequence logo plots”. But these field specific data representations may not be appropriate for all audiences and branching out to create something that is both visually appealing and effective at conveying the proper message to the right audience is tough.

There are multiple possible explanations for the gap in scientists’ ability to make effective data visualizations. The first is that we simply are not trained in art or graphic design. Additionally, scientists do not always have access to someone, such as a graphic designer, to collaborate with for making figures. Although there are efforts being made, such as this one at the University of Washington, that work to forge collaborations between science and design students. Another factor that introduces a hurdle to scientists making good data visualizations is time. First, a good figure requires a complete and thorough understanding of the data which can take a tremendous amount of time, particularly in the days of big data, where data sets are extremely vast and complex. Finally, it also takes time to create a figure. Creating a beautiful data visualization requires hours of training and working with unfamiliar software, such as Adobe Illustrator, that takes patience and persistence to master.

So scientists need to improve their data visualization skills but it is often difficult to find the time to practice some of these skills. Some helpful beginners tips for data visualization are shown below because the goal is always the same.

Goal of data visualization: To create a story from a set of data in a clear manner

How to get there:

  1.   https://stock.adobe.com/Figure out your narrative, or the story that you want to tell with the data. This requires a comprehensive understanding of the dataset you aim to represent along with the an understanding of your audience.
  2.   Determine the best way to represent the data. This sounds easier than it actually is and could take some time making and comparing multiple different types of figures. Again remember the story and the audience.
  3.   Learn a little bit about how the brain perceives images, color, and depth. Learning the core principles of design, such as color choice, negative space, and typography, can have an immediate impact on
    the visual appearance of the graphic. This
    document highlights data visualization specifically for the life sciences and Nature has compiled a collection of articles related to design.
  4.   Get feedback from everybody. Before finalizing a data visualization make sure to get feedback from multiple people with different backgrounds. Ensure they all interpret the data as you aimed to present it. And, as most things are not perfect the first time, refine and remake until you create your ideal data visualization.

Nearly every scientist hopes to turn the ideas in their head into a beautiful work of art, similar to this process of going from sketch to infographic. It takes time, patience, and practice to develop these skills. If you are a scientist looking to enhance your data visualization skills consider taking an online course, reading up on data visualization, practice making figures from some largely accessible datasets or for your colleagues, entering a contest such as the NSF Vizzies Challenge, or attending a conference or workshop.

Peer edited by Alex Mullins.

Follow us on social media and never miss an article:

Minority Representation in STEM Fields

https://commons.wikimedia.org/wiki/File:TheMeltingpot1.jpg

People immigrating to the United States of America brought with them different cultural identities and life experiences all come together like a melting pot

United States as a “Melting Pot”

Indigenous peoples inhabited the land, that is now known as the US, many generations before Christopher Columbus arrived. These people were culturally and linguistically diverse and since the founding of the US in 1776, the number of languages, customs, and lifestyles in this land has dramatically increased due to constant migration to the US from all corners of the globe. This diversity gave rise to the US being called a “Melting Pot” – a metaphor for the different populations coming together to form one country. With this diversity though, comes discrimination, creating an environment that has been adversarial, and hardly a united and representative nation.

To acknowledge the different contributions of diverse groups in this country, a calendar of months to recognize diversity has been established. For example, February is African-American History Month, March is Women’s History Month, May is Asian and Pacific Islander Heritage Month, September 15th to October 15th is Hispanic Heritage Month, and November is Native American Heritage Month. The majority of people whose heritage, culture, and value to this country should be recognized during these months are often overlooked, underrepresented, and under-appreciated. In addition to highlighting their achievements for one month, it is important to continuously recognize their voices and contributions. This article aims to stress the importance of representation and intersectionality, particularly in Science, Technology, Engineering and Mathematics (STEM) fields, and to celebrate those who have achieved success in their fields despite many obstacles.

Identity and Intersectionality

Coined by Kimberlé Crenshaw, intersectionality is the concept of overlapping social identities leading to a more severe form of discrimination. As an example, look at the colored circles to the right. Each one could represent an element of discrimination such as race, religion, gender, sexual orientation, disability, class, age, etc. In the top left, there is one yellow circle. Imagine this circle represents women (gender). This represents one possible layer of discrimination. To the right, the overlapping yellow and pink circles represent increasing layers, or intersections, of identities. The yellow circle again represents women, and the pink circle may represent African-Americans. Women

Image Credit: Rachel Cherney

Diagram of Intersectionality where each colored circle represents different element of discrimination

encounter one dimension of discrimination (gender), as do African-Americans (race). However, being an African-American woman means their burden is now two-fold: they have two dimensions of discrimination, being a woman and being African-American. As a person has more dimensions (as seen in the two figures in the bottom) that do not fit with the dominant social norm, those dimensions add up to increasing amounts of discrimination. Identity and intersectionality can be especially challenging for people who have combined ancestry. Often, people don’t know with whom or how they should or can associate, leading to an increased identity anxiety and discrimination.

It is important to recognize and understand the concept of intersectionality to realize that discrimination is complex to rectify. However, it is crucial to try to eliminate the inequalities that come forth from discrimination and intersectionality since inequalities that lead to oppression can restrict the future and potential of underrepresented groups. The more we help each other, the better the world becomes for us.

*Race is used above because it is commonly used to discriminate, although race is a social construct and has no scientific basis. For a distinction between race and ethnicity, click here.*

The Lack of and Need for STEM Workers

STEM jobs drive the global economy by being one of the top sources of innovation and are growing faster than any other public or private sector in the US. Within the next 10 years, there will be over 1 million jobs in STEM available, however there are not and will not be enough scientists to fill all of the positions. Temporary residents (including international students) are immigrating to the US to fill this gap through various visas (F1, J, H1B, etc.), even though we have enough students who could someday fill the gap.

Underrepresented groups embody roughly 36% of the population in the US, yet represent less than 20% of the STEM workforce. Due to discrimination (particularly intersectionality) and lack of representation, support, and youth awareness, the potential of our minority peers in STEM has been largely untapped.

https://www.nsf.gov/statistics/2017/nsf17310/digest/early-career-doctorate-holders/characteristics.cfm

Proportions based on U.S. citizens and permanent residents with known race or ethnicity. Graph clearly depicts the gap between the percentage of Doctoral degrees in Science and Engineering earned by Whites and Minorities SOURCE: National Science Foundation, National Center for Science and Engineering Statistics, Early Career Doctorates Survey pilot study, 2015.

Aside from the lack of minority students earning STEM degrees, their path to success gets more challenging following graduation. They enter the workforce but don’t necessarily stay because of constant threats they face, may they be racial bias, stereotype threat, microaggressions from colleagues, or just lack of cultural knowledge among mentors and colleagues. Boosting diversity can help boost the status of underrepresented groups, and get rid of threats minorities face in the workforce. It is a lot easier to see yourself as a scientist if you see others that share your experiences or culture. Since there are so few underrepresented students in Master’s and PhD programs in STEM, the challenges are compounded. If no one shares a lifestyle like yours, how can you relate?

The general population has a particular proportion of women and minorities, but that proportion is underrepresented in STEM. Since STEM fields and the world we live in are multidimensional, the people working in those fields should represent that multidimensionality. It also brings us together as a community.

Diversity Enhances Innovation

Diversity allows for new interpretations and exchanges of ideas and data. This encourages innovative and diverse ways of thinking and tackling problems leading to a greater likelihood of coming up with real solutions. The different viewpoints (based, in part, through individual differences in experiences) that each individual brings to the table helps foster teamwork and collaborations. If all people are from the same background and same education, they might all look at a problem the same way. Diversity helps us solve a common problem by bringing different ideas into the dialogue. For example, women and men differ anatomically and physiologically and without taking this difference into account when designing products, a product may not be helpful or may even be harmful to the user. Women on average are shorter than men, so when driving, generally are physically closer to the steering wheel. When airbags were first designed, this height difference between men and women wasn’t taken into account, and women experienced a more forceful impact from sitting closer to the steering wheel. This resulted in more female deaths by airbags than accidents.

Another more serious example is the creation and production of drugs/medications. Clinical trials are often homogeneous and fail to include adequate numbers of women as they are primarily tested on men. Due to physiological differences between men and women, some of these drugs can be helpful to men, but not to women, or could be harmful. This is also relevant to ethnicity and ancestry. Certain groups of people are more prone to certain diseases or have different physiology from another group, and if a medication was cleared for one of those groups, it doesn’t mean it will work well for the other.  Considering the face of the US population is changing and by 2042 African-Americans and Latinos are predicted to be the majority minority (over 50% of the US population), it is critical to include underrepresented groups in clinical trials that lead to drug development and application.

Getting Minority Students into STEM Fields

To fill the available positions now and in the future, it is important to reach out to students of all backgrounds and abilities, starting at a young age, and to let them know what opportunities are available to them. It is also important to spark an interest and passion for science in these students, and to help and support them as they advance through their education. Allowing resources to be available to all students of all backgrounds is essential. Read a previous article about the divide between rural and urban areas in the US due to lack of internet access, highlighting the effect of inconsistent distribution of resources.

Resources and education play a critical role in the development of STEM students and statistics show that Americans in general don’t perform well in STEM fields and are consistently behind much of the world. Thus, the education of these fields needs to be reexamined. At the University of Maryland – Baltimore County (UMBC), president Dr. Freeman Hrabowski has created an environment that fosters excellence in STEM skills, guiding UMBC to be the leading university in the country to produce African-American students that earn PhD and MD-PhD degrees in STEM fields. He restructured the way STEM classes were taught and created four pillars of STEM education to “get underrepresented students to the top”. These pillars began as a way to help the most underrepresented students succeed in STEM, and by helping and redesigning education for the most underrepresented students, students of all backgrounds at UMBC are now more successful STEM fields.  Dr. Hraboski’s four pillars “empower students to take ownership of their education and love to learn,” while fostering a collaborative environment. The Meyerhoff Scholars Program at UMBC was created to use the four pillars of STEM education with underrepresented groups and UNC has worked with UMBC to create a similar program, called Chancellor’s Science Scholars Program. Hopefully, more programs like these will arise around the country, and STEM diversity will increase, along with the number of successful students in STEM fields.

Attitudes Towards Minorities in STEM Fields

Dr. George M. Langford, a previous UNC faculty member and advocate for minorities in STEM fields, wrote about the very topic, asking educators to step up and recognize what needs to be done for underrepresented students:

“As the demographics in the United States evolve, we as educators must work to increase the number of minority students in these disciplines, disciplines where they remain underrepresented. Efforts have been underway to improve minority representation for several decades… and there has been improvement, just not as much as we’d like. Many are imminently qualified, but denied for discriminatory reasons.

Though there is much work to be done to attract minorities to and propel them in the STEM disciplines, I believe the silver bullet is a conscious effort on behalf of all educators to provide passionate mentorship to prospective scientists.

By comparison, the scientific community has made progress but much change is needed before we will see the numbers improve to the extent that will have real impact. Racial bias lingers and differences in the day-to-day experiences of minority scientists persist. Stereotype threat continues to derail careers and compromise performance. Even the best mentors fail to realize the need to provide culturally competent guidance to ensure minority postdoctoral fellows who leave their labs start their careers with the same level of productivity as their white counterparts. These challenges are urgent and must be addressed sooner rather than later to maintain our country’s competitive positioning in the global community.”

To support your peers at UNC in STEM Fields, look to join or support:

  • BGPSA – UNC Black Graduate and Professional Student Association
  • FNGC – UNC First Nations Graduate Circle
  • IMSD – UNC Initiative for Maximizing Student Diversity
  • MSC – UNC Minority Student Caucus
  • SACNAS – UNC Society for the Advancement of Chicanos/Hispanics in Science
  • Stem Pride of the Triangle – Research Triangle STEM LGBTQ+ group
  • WINS – UNC Women in Science

Unsung Minority Heroes in STEM

To recognize the unsung minority heroes in STEM fields from the U.S. and around the world, below is a list of those heroes whose innovations and contributions have improved the world we live in. Most importantly, this list is to emphasize that everyone is capable of achieving greatness, if only given the opportunity. One characteristic to note about the unsung heroes is that, besides being successful citizens and scientists, a majority of them were also civil rights activists.

Notable Minority Women in STEM Fields

https://commons.wikimedia.org/wiki/File:Katherine_Johnson_medal.jpeg

Former NASA mathematician Katherine Johnson is seen after President Barack Obama presented her with the Presidential Medal of Freedom, Tuesday, Nov. 24, 2015 Photo Credit: (NASA/Bill Ingalls)

  • Nita Ahuja – Indian surgeon; 1st female Surgeon in Chief at Yale
  • Lori Alvord – Native American surgeon
  • Farida Bedwei – Ghanian software engineer with cerebral palsy
  • Elizabeth Blackwell – English physician; 1st female Doctor of Medicine
  • Marie Curie – Polish physicist; 1st woman to win a Nobel Prize, 1st person to win two Nobel Prizes, and only woman to hold Nobel Prizes in two different fields (Physics and Chemistry)
  • Wanda Diaz Merced – Deaf Puerto Rican astronomer
  • Rosalind Franklin – English scientist; work led to elucidation of DNA structure
  • Temple Grandin – Autistic American animal behaviorist
  • Grace Hopper – American Naval Officer, mathematician, and computer scientist
  • Mae Carol Jemison – African-American engineer and astronaut; 1st female African-American astronaut
  • Katherine Johnson – African-American NASA mathematician
  • Hedy Lamarr – Austrian inventor; laid foundation for Bluetooth and GPS
  • Ada Lovelace – English mathematician; laid foundation for computer science
  • Jane Luu – Vietnamese-American astronomer; discovered and characterized the Kuiper Belt
  • Maryam Mirzakhani – Iranian mathematician; 1st woman and Iranian to win the Fields Medal
  • Florence Nightingale – English surse/statistician; laid foundation for the field of Nursing
  • Sally Ride – LGBTQ+ American astronaut; 1st American woman in space
  • Dorothy Vaughan – African-American NASA mathematician
  • Ada Yonath – Jewish-Israeli biochemist; pioneered the structure of the ribosome
  • Lydia Villa-Komaroff – Biochemist; 3rd Mexican-American woman in the US to receive her PhD in STEM

Notable Minority Men in STEM Fields

https://commons.wikimedia.org/wiki/File:Finlay_Carlos_1833-1915.jpg

Carlos Juan Finlay

 

 

Peer edited by Nicole Smiddy and Gowri Natarajan.

 

Follow us on social media and never miss an article:

 

 

Rural Internet Access and Diversity in STEM

https://commons.wikimedia.org/wiki/File:Left_to_right_Chien-shiung_Wu_(1912-1997)_and_Dr._Brode_(6891734435).jpg

As you can see, white men have typically dominated physics research. Dr. Chien-shiung Wu (1912-1997), professor of physics at Columbia University, with “Dr. Brode”

It is no secret that many STEM fields, especially physics and engineering, suffer from a lack of equal representation by race, ethnicity, and gender. Approximately 75% of all physics degrees go to white scientists, and 80% of those degrees to go men. While much of the work in inclusivity in STEM has focused (for good reason) on women and racial/ethnic minorities, there is also an underrepresentation of scientists from rural geographic locations. A common problem contributing to the lack of diversity in science is the lack of diverse role models and representations of scientists in the media. Other factors involve the complex intersection of socioeconomic status and access to resources like textbooks, science equipment, and high-speed internet. Because the internet is both an avenue for information transfer and a platform for seeing diverse role models, the importance of internet access cannot be overemphasized in its impact on fostering inclusivity in STEM. Resting at the crux of the diversity in STEM problem and lack of internet access is rural America. In an effort to make science accessible to geographically diverse populations and thereby attract as many talented students as possible, scientists should advocate for wide-spread, affordable, high-speed internet access for all.

Diversity produces better science

While the diversity buzzword has generated a lot of press recently, many in the science community and beyond still roll their eyes at diversity efforts and question the utility of programs aimed at increasing diversity in STEM merely for diversity’s sake. But, it turns out that including diverse perspectives actually makes you do better science: diversity improves problem solving, makes your papers more likely to be cited, makes you prepare stronger arguments, and prevents groupthink. With so much evidence that diversity is good for science, it is unequivocally in our best interest to foster inclusive environments and make science accessible to as wide a range of people as possible. But, to make science accessible, we must first make internet accessible.

Internet’s Critical Role

Over the past decade, the internet has quickly morphed into an absolute necessity for modern living. Bills are posted and paid online. Retail is moving online. Even brick-and-mortar stores now use internet services to process credit card payments or digitally cash checks. And of course, the internet has become the main avenue for information transfer. Schools post assignments online and online information repositories have replaced physical textbooks in many schools. Science news is largely disseminated via Facebook, Twitter, online radio streaming, online journals, podcasts, and Youtube. Google is an invaluable tool for the student of science at any education level. Scientific journals necessary for professional science are increasingly moving from print to online formats.

https://pixabay.com/en/social-media-3d-render-bubble-2636256/

Social media connects scientists around the world.

In addition to being essential for learning science, the internet is also a crucial tool for finding diverse representations of scientists. Diverse representation of scientists is vital because when it comes to role models, seeing is believing. Growing up without internet access and only local tv programming, the only scientists I could name were Albert Einstein and Bill Nye the Science Guy. With the advent of social media, users now have access to online communities like the National Society of Hispanic Physicists and the #BlackinSTEM community. For students without ready access to online media, their access to scientific role models and science resources will be severely restricted. This may be a contributing factor to the underrepresentation in STEM of students from rural areas where high-speed internet is unavailable.

 

High-speed internet unavailable in many rural areas

In 2016, the Federal Communications Commission (FCC) defined broadband internet as 25 Mbps download speed and 3 Mbps upload speed. According to that same report, roughly 10% of Americans lack access to those speeds. Of the 10% lacking access, 70% live in rural areas. Put in the context of the total population of rural Americans, this means that about one-fourth of all rural Americans lack access to high-speed internet. Further, this report merely addresses the availability of high-speed internet without taking into account the prohibitive costs for many consumers. The true accessibility of high-speed internet depends not only on having the infrastructure in place, but also on imposing regulatory pricing so that high-speed internet is affordable everywhere.

https://commons.wikimedia.org/wiki/File:Ch3e3d.png

Map of the U.S. showing broadband internet access by county

The reason high-speed internet is unavailable in so much of rural America is simply because it is not cost-effective for the internet service providers to install the infrastructure in areas with low population densities. Even in well-established cities, you don’t have to go very far to find that internet availability has suddenly disappeared. At my apartment in Carrboro, I can access up to 400 Mbps internet services. (Again, whether or not anyone could ever afford to pay for 400 Mbps is another story.) Just 12 miles away, outside the city limits of Hillsborough, my father has access to only 3 Mbps speeds no matter how much he is willing to pay. With speeds this slow, video streaming is impossible and even surfing the web quickly becomes frustrating or impossible. Certainly areas which lack high-speed internet access have a significant handicap in the dissemination of science information, resources, and models.

Internet access and geographic diversity in STEM

While there are probably many reasons factoring into the lack of geographic diversity in STEM, one of them is not that students from rural areas are inadequately prepared for STEM classes at the collegiate level. According a 2007 report by the U.S. Department of Education, students in rural areas performed as well as or slightly better on standardized math and science tests as compared to their peers in urban and suburban areas in grades 4, 8, and 12 (pgs 50 and 54 of that report). However, at the college level, rural students are severely underrepresented in STEM fields, and this under-representation may have grown worse in recent years. This implies that science is suffering by not attracting talented students from diverse geographic locations.

One of the barriers preventing rural students from entering STEM fields is the lack of high-speed internet access in rural areas. Because the internet is not being treated as a utility, there is currently no federal mandate that high-speed internet access be made available nationwide. Further, internet is not subject to the same federal ratemaking regulations as are electricity and natural gas to prevent providers from suddenly introducing huge rate hikes. Some companies such as Microsoft have publicized long-term plans to implement the infrastructure needed to make high-speed internet available in rural areas, but progress is difficult to see. Until then, some rural communities have taken matters into their own hands and are building their own community broadband networks. This progress is slow and relies on individual communities having the resources to individually finance their internet infrastructure installation. If we really want to increase access to science and foster diversity in science, scientists should turn some attention to making high-speed internet accessible and affordable for all. 

Peer edited by Jon Meyers and Sara Musetti.

Follow us on social media and never miss an article:

Science and Ethics

So let’s say, hypothetically, that your lab receives blood samples from a group of individuals to study genetic links with diabetes.  However, these samples would also provide important insights into other diseases.  But the researchers did not get consent from the blood samples donors for the extra research.  For researchers at Arizona State University (ASU) and the University of Arizona (U of A), this was not a hypothetical situation.  

https://www.flickr.com/photos/neeta_lind/3572379084

DNA from blood samples provide the information needed to potentially cure many diseases that plague us today.  But if the proper procedure is not followed, these scientific breakthroughs may never leave the courtroom.

They collected 400 blood samples from the Havasupai Tribe around 1990 to understand if there was any connection between genes and diabetes, at the tribe’s request. This particular tribe is from an isolated area of the Grand Canyon, with a restricted gene pool contributing to genetic diseases.  This Native American tribe has a high-incidence with diabetes.  The researchers did investigate this problem with diabetes, but they also wrote a grant proposal for researching schizophrenia in the Havasupai Tribe, which the tribe was not aware of nor gave consent for.

The main issues raised in this case are:

  • What is informed consent?  In this case, the consent form stated that the samples were to be used for studies on behavioral and medical diseases. But, meetings between the researchers and tribe members indicated that only diabetes was to be studied.  Using broad or vague language in consent forms can lead to miscommunication between scientists and subjects.
  • What information in the medical records can be accessed and by who?  Some researchers gained access to medical records without permission. Files should be kept in a secured place where only the authorized users have access.
  • Who has control of the samples?  This is a question that needs to be discussed with the subjects before samples are collected.  Researchers might want to contact their university’s research center for more information on sample ownership.

 

As scientists, we have a set of standards, or ethics, that help members coordinate their actions and establish trust with the public. Below are four ethical norms (or goals) that affect graduate students:

https://upload.wikimedia.org/wikipedia/commons/d/d9/March_for_Science%2C_PDX%2C_2017_-_29.jpg

Scientists build and maintain credibility with the public by conducting research responsibly and with integrity.

  1. Promote the goals of scientific discovery, such as furthering knowledge and truth.
  2. Advocate collaboration between scientists; diversity and collaboration create new and novel discoveries that we can all benefit from.
  3. Promote accountability to the Public; it’s essential that the Public can trust the scientists to do their best work and avoid misconduct, conflicts of interest, and ensure that human/animal subjects are properly handled.
  4. Build Public support, without federal funding many of us graduate students would not be able to do our research.

For the misuse of their DNA samples, the  Havasupai Tribe filed a lawsuit against Arizona Board of Regents and ASU researchers in 2004, which eventually led to a settlement in 2010.  The tribe received $700,000 and their blood samples were returned.  The situation with ASU and U of A researchers has left an air of mistrust in Native American communities.  As scientists, it’s our responsibility to build trust with the public and maintain open and honest communication.  

 

Peer Edited by Bailey DeBarmore

Follow us on social media and never miss an article:

Fossils That Slumber in the Mountains and the Mud

Over 200 million years ago, a reptile, 11 feet long and 1500 pounds, was prowling about, likely feeling very pleased with himself. Not only did he have four crunchy creatures starting to digest in his stomach, but he had bitten another weakling in the neck and then crushed it under his left knee. Just at this moment of triumph, the reptile got stuck in the mud of ancient Jordan Lake, and slowly drowned.

Around the same time, by the seaside of what would one day become Italy, the forerunners to today’s oyster were nestling on the sea floor.

41 years ago, in 1976, Dr. Joe Carter obtained his PhD from Yale University and then drove down with his wife to start a new job at Chapel Hill’s geology department. He came as a sleuth for fossils. Ancient oysters, clams, mollusks, bivalves – Dr. Carter wanted to learn as much about them as he could.

credit: Mejs Hasan

Dr. Carter and one of his fossil replicas

For most of us, shells are just the violet-tinted, half-moon shaped spectacles that nip our feet at the beach.

But for Dr. Carter, these bivalves – and especially their fossils resurrected millions of years after they lived – are clues into evolutionary history.

In 1980, Dr. Carter took a trip to the mountains of northeastern Italy. There, he found an 80-year-old man who had been collecting Triassic fossils for decades – bivalves that lived 200 to 250 million years ago. The prospect of so many fossils was like coming upon a casket of jewels for Dr. Carter. The Italian man gave him a generous sampling of his fossil collection, and Dr. Carter fell to examining them.

“Well, this looks like an oyster,” Dr. Carter speculated, as he dwelt upon one of his fossils. Or was it? Oyster fossils dated back in time for 200 million years, beyond which they disappeared into the guarded slumber of the unwritten past. Scientists had assumed this marked the juncture at which oysters evolved, and as they cast about for a suitable ancestor, they decided upon scallops: both oysters and scallops have similar, non-pearly shells.

But perhaps the little Italian oyster told a whole new story. To investigate, Dr. Carter participated in a blatant case of disturbing the peace of the deceased. He took his Italian bivalve, sharpened his knife, and embarked on a long-delayed autopsy.

He dissected the defenseless fossil into impossibly tiny 150 micrometer slices. He examined each slice carefully under a microscope, then enlarged them on plastic drafting paper. Then, he had a “eureka” moment.

Today’s oysters are almost all calcite and non-pearly. But Dr. Carter’s ancient Triassic oyster had only a hint of calcite and it consisted mostly of mother-of-pearl. Could the mother-of-pearl oyster indicate that oysters evolved from “pearl oysters”, rather than from scallops?

credit: Mejs Hasan

Momentos from a long career

It was time to see if DNA could confirm the hint provided by the fossil record, a task given to Dr. Carter’s student, Kateri Hoekstra. She performed one of the first DNA analyses of living bivalves ever to focus on their evolutionary relationships. Just as the fossil record predicted, the DNA confirmed that the oyster from the Italian mountains, dug up after its rest of 221 million years, was a closer relative of pearl oysters than scallops.

Dr. Carter sent a letter to many natural history museums in Italy, asking them to find more of the mother-of-pearl oyster. But no one ever did. Still, Dr. Carter had fine pictures and drawings of the single known fossil. People started citing the fossil as UNC-13497b.

Such a clunky name would never do for the only mother-of-pearl oyster in the world, even if it did honor our great university. Dr. Carter finally christened it Nacrolopha carolae: Nacrolopha after the nacre (mother-of-pearl) in the Lopha-like oyster, and carolae after his wife, Carol Elizabeth.

This is the sweet side of invertebrate paleontology: a fine day in the Italian mountains, mother-of-pearl oysters, and suffusing the faint echoes of history with the name of your loved one.

But not everyone wants to give fossils their due attention.

The fossil record isn’t always perfect. For example, jellyfish rarely even leave fossils. For snails, the fossil record is misleading due to convergent evolution. The same features evolved in so many different snails that it’s hard to put things in order. You see the same shapes come up again and again.

As a result, many biologists have decided to send the fossil record packing. Since it doesn’t enlighten relationships for all groups of species, the idea that it might provide clues for a few is uncharted territory.

On the other side of the line-up, you have a handful of scientists, Dr. Carter, his former students, and his research colleagues among them. They are trying to convince the biologists that for some groups of species – especially bivalves – the fossil record is actually crucial.

It’s an uphill battle because, as Dr. Carter explains, the biologists have all the money. They are awash with government funds through the “Tree of Life” project that puts primary emphasis on DNA linkages between species.

credits: Mejs Hasan

Dr. Carter working in his lab.

Dr. Carter recognizes that DNA is a necessary tool. After all, it was Kateri’s DNA analysis that confirmed the origination of Nacrolopha carolae and modern oysters from pearl oysters. But it’s not the whole story. For example, DNA tells us that our closest relatives are the chimps. But that does not mean we evolved from them, or them from us! Fossils are the missing key that can shed light on the extinct creatures who filled in the evolutionary gaps.

Dr. Carter, along with David Campbell, his former student, now a professor at Gardner-Webb University, published a paper where they described how DNA and the fossil record can be used in symphony. Unfortunately, as Dr. Carter explains, “lots of people thought it was baloney.”

That reception is not stopping Dr. Carter. He and David Campbell are trying to publish a series of papers with examples of how DNA can give faulty evidence that the fossil record can correct. As Dr. Carter says, it will be interesting to see what the opposition says at that point.

Opposition aside, there’s one set of fossils that dazzles everyone – those of dinosaurs. Dr. Carter’s one foray into reptilian fossils happened by accident. Two of his students were studying a Durham quarry in 1994, when they came across the ankle bones of “a weird new guy”. It was the same unfortunate creature that, having filled his stomach with four prey, sank into a mudhole of ancient Jordan Lake and drowned just at its very moment of triumph. Digging it up, Dr. Carter and his students found hundreds of bones. Once cleaned and reassembled, it turned out to be a reptile shaped very much like a dinosaur, but not quite.

Dinosaurs roamed about on tiptoe, but this reptile’s foot walked on both toes and heels, like humans do. It was the best-preserved skeleton of this group of reptiles ever found. Dr. Carter toured museums in Europe and the US to make sure the reptile had not been named before.

Just thereafter, Karin Peyer walked into Dr. Carter’s office. She had an undergraduate degree in paleontology, a husband starting graduate school at UNC, and time on her hands. She asked: do you need any help?

“Boy, did you come at the right time!” Dr. Carter greeted her. Karin worked with Dr. Carter and experts from the Smithsonian Institution to formally describe and name the find.

They called it Postosuchus alisonae – alisonae a tribute to a friend of Dr. Carter’s who was dying of cancer at that time.

*******************

It was December 2015. In Dr. Carter’s large dim lab, filmy sheets of plastic drafting paper were ruffling in a soft breeze from the open window looking out on a hillside over Columbia Street. Sickle-shaped knives were stacked here and there, beside replicas of treasure from King Tut’s tomb. In between sectioning and sketching an ancient bivalve called Modiolopsis, Dr. Carter was packing.

credits: Mejs Hasan

Dr. Carter at his retirement party

He was retiring after 39 years. In practice, that merely means that Dr. Carter can now avoid going to faculty meetings. Otherwise, he can still serve on graduate student committees; he is coordinating the revisions of bivalves in the Treatise of Invertebrate Paleontology. He still has fossils to section and examine, and biologists to convince of the worth of the fossil record.

The only difference is, when Dr. Carter began his professorial work, it was just him and his wife, a young daughter and a baby boy. Now his daughter is 45 years old and his son is 39, and they both have their own families that Dr. Carter will be spending a lot of time with. It’s amazing what changes four decades can bring. But perhaps it’s easier to be philosophical and surrender to what’s ahead when you hold in your hands an oyster that lived 221 million years ago.

Peer edited by Lindsay Walton and Alison Earley.

Follow us on social media and never miss an article:

 

The Impossibly Ideal Scientist

Image and artwork created by Lindsay Walton

The solving scientist: can this be fixed in time?

Beverly Crusher. Roy Hinkley. Emmett Brown. Samantha Carter. Sheldon Cooper. The Doctor. Abby Sciuto. Temperance Brennan. What do each of these scientists have in common? From creating a Geiger counter out of bamboo, to discovering, identifying, and curing a disease in the nick of time, each of these cinematic scientists has completed impossible tasks. Often works of fiction create all-knowing scientists who can solve any problem posed to them in the nick of time. However, do these depictions affect public expectations and imply that scientists are experts in every scientific field imaginable?

During recent years, many stereotypes about scientists have shifted, allowing researchers to shed the traditional “geeky” scientist persona. Some say that new perceptions of scientists reflect their cinematic portrayal as heroes and experts, “mavericks” who overcome obstacles both cerebral and physical in nature, persevering until they successfully save the day at the last moment possible.

However, how do these changing ideas about scientists translate to public expectations of the average scientist? Do “maverick” scientists portrayed in film cause people to idealize scientists and lead to the expectation that they will have all the knowledge Data, the android in Star Trek, has in his memory banks? In a recent survey, 49% of polled scientists stated that they felt the public has unrealistic expectations about the speed at which scientists should generate solutions to problems. Perhaps scientists feel the pressure of comparing themselves to their science fiction counterparts. The data certainly shows that the public has historically had high expectations for scientists. When polled, most Americans predicted scientists would cure cancer within 50 years, with polling starting as early as 1949. However, cancer still has not been cured, as exhibited by the recent National Cancer Moonshot proposal generated by President Obama, pushing for research funding to improve cancer patient outcomes.

Is it even possible to be the all-knowing scientist? As a lowly graduate student, I know that I will never be as brilliant as Dr. Beverly Crusher, who could probably cure cancer within one single episode. However, I believe that each of these idealized scientists creates a good model of what we should hope to be as scientists — individuals who thrive on the work, constantly learn new things, contribute to current knowledge, and reward the faith and trust that the public places in them.

Peer edited by Kaylee Helfrich. Image by Lindsay Walton.

Follow us on social media and never miss an article:

Biology and Physics Meet in the Middle

Scientists thrive on “aha” moments— breakthroughs in knowledge that come from careful planning or perhaps fortuitous luck. For a team of researchers led by Josh Lawrimore, a fourth-year graduate student in Kerry Bloom’s lab at UNC, their “aha” moment came about by approaching their research question in a new way.

Josh’s research is focused on what happens to a chromosome—a long molecule of DNA wrapped around proteins—when a parent cell divides into two daughter cells. To study chromosomes, the Bloom lab uses baker’s yeast as an experimental model. The centromere region in yeast cells has been well-studied, and their chromosomes are similar in structure to human chromosomes. Amazingly, through working with this simple organism, Josh has solved a long-standing mystery in the field of cell biology.

Continue reading

The Excellent Journey of Bob Bagnell

As I enter the Microscopy Services Laboratory (MSL), a soft southern accent greets me: “Come in- want a cucumber? Help yourself!”

Dr. Bob Bagnell, the faculty director of the MSL, is an institution at UNC. Over the course of thirty years, he has developed the MSL from a set of electron microscopes in the Pathology Department to a full-featured microscopy core, offering numerous light and electron microscopy services in the basement of the Brinkhous-Bullitt building. Bob is an expert at microscopy, a natural teacher who never hesitates to help his patrons whether they are newbies or experienced users. His good nature combines with acumen for troubleshooting in such a way that even if your slides are worthless, leaving the MSL in a bad mood is difficult. You know how to fix your experiment, and almost feel joy from your failure, because you learned from Bob. His frequent offers of fresh bread also help. Continue reading

Blue Energy Research Underway in North Carolina

A new project kicked off this July as researchers across four institutions joined forces with local start-up companies, consultants, and coastal utilities to explore how a process that occurs naturally every minute along North Carolina’s coast may be harnessed for sustainable energy.

The process in question is the mixing of salt and fresh water in North Carolina’s sounds and estuaries. In order to develop technology and assess the feasibility of implementing such technology along North Carolina’s coast, researchers from North Carolina State University, the University of North Carolina at Chapel Hill, the Coastal Studies Institute, and East Carolina University are collaborating on a three-year project funded by the UNC Research Opportunities Initiative (ROI).

Co-principal investigator Orlando Coronell, PhD, Assistant Professor of Environmental Sciences and Engineering at the Gillings School of Public Health at UNC, describes the premise in terms of the more familiar process of desalinization. During electrodialysis Continue reading