One Cancer Drug to Rule Them All?

As early as 1999, a scientific study in Denmark found that patients with Huntington’s disease (HD) are less likely to develop cancer when compared to their healthy relatives and the overall population. A decade later, another independent study looked into forty years of patients’ information from the Swedish Cancer Registry and identified a similarly low risk of cancer in patients with HD and related neurodegenerative diseases. Strikingly, this association was not limited to one specific type of cancer but applied to many different tumor types.

What is the connection between cancer and these neurodegenerative diseases, which cause a progressive loss in the structure of the nerve cells? Researchers at Northwestern University think the answer to this puzzle lies in HD-associated ribonucleic acids (RNA), molecules responsible for important biological functions like expression and regulation of genes.

An overabundance of repeated RNA sequences in HD can suppress genes crucial for the survival of nerve cells. A team of scientists led by senior author Dr. Marcus E. Peter at Northwestern recently discovered that these RNA sequences are also highly toxic to a broad variety of cancer cells, and thus have the potential to be a uniquely lethal weapon in the fight against cancer.

Triplet CAG repeats in Huntington’s Disease can be highly toxic to cancer

All major forms of life on the earth use the nucleic acids like DNA and RNA to perform critical biological functions. The nucleic acids are sequences of five basic building blocks called nucleobases, which are commonly represented by the Roman characters A, G, C, T, and U.  Sequences in nucleic acids can encode information and direct functions in a living system. In HD, a defective genetic alteration causes a “stutter” in a gene called huntingtin, resulting in a prolonged stretch of triplet repeats of C-A-G.

In the earlier phases of their study, Dr. Peter and his team tested a family of RNAs containing these CAG repeats in multiple human and mouse cancer cells. Within hours of treating the cells with the RNAs, the cancer cells stopped growing and eventually most of the cells died. Encouraged by these results, the researchers moved on to test the RNAs in a preclinical mouse model of ovarian cancer. They used small particles, known as nanoparticles, to enable better delivery of the RNAs to the tumor. The treatments were able to reduce the growth of the tumor and did not cause any prominent toxicity to the mouse.  Further, the cancer cells were not observed to be resistant to the therapy even after multiple treatments.

These “suicide” RNA molecules can be a breakthrough in cancer therapy. However, there’s a long journey ahead. The effect of the RNAs on normal cells is not quite clear yet. While a short-term therapy of a few weeks will probably not result in the neurological toxic effects of the repeated tri-unit RNAs, a transient therapy may not be adequate for long-term cancer remission. In fact, mice were observed to have a persistent tumor progression once the therapy was discontinued. Further, to achieve a robust tumor control, the mice had to be daily dosed with the RNAs for two to three weeks. The dosing can be a further delivery challenge in hard to penetrate solid tumors. Nevertheless, these issues can be addressed by rigorous optimization of the RNA formulations and using approaches like gene therapy to ensure long-term availability of the toxic RNAs in the tumor. Finally, it is rare to see a drug so effectively target so many different types of cancers, across species. Whether this is a “moonshot” against cancer, time will tell.

Peer edited by Paige Bommarito and Laetitia Meyrueix.

Follow us on social media and never miss an article:

Next in the SWAC Science Communication Series: Science and Editing with Dr. Lakshmi Goyal

Image courtesy of Dr. Lakshmi Goyal

Dr. Lakshmi Goyal, Editor of Cell Host & Microbe, Publishing Director at Cell Press

We are thrilled to welcome Dr. Lakshmi Goyal as our speaker for the Careers in Science Editing Seminar as part of the SWAC Science Communication Certificate Series for 2018. Lakshmi will speak on March 20th from 3:00 to 4:30 pm at MacNider Hall Room 21.


*Light refreshments will be served!

As a reminder, you must attend 4/6 events to earn the certificate.

Editing plays an important role in shaping how we as scientists communicate our stories.  If you have ever wondered how to be a more effective editor, or how you would even become an editor, you will want to join us as we hear from Lakshmi Goyal, Editor of Cell Host and Microbe.  Lakshmi has been an editor with Cell Press since 2001 and has many insights to share!  Come hear her interactive seminar on how she got her start in editing, what a typical day as an editor looks like, and also important lessons she has learned throughout her successful career.

Dr. Lakshmi Goyal is the Editor of Cell Host & Microbe and Publishing Director at Cell Press.  She joined Cell Press in February 2001 as a Senior Editor on Cell.  In 2006 she was appointed the launch Editor of Cell Host & Microbe, a new primary research journal focused on host-microbe interactions.  In 2007, she became the Executive Editor of the Microbiology portfolio with strategic responsibility for Trends in Microbiology, Trends in Parasitology and Trends in Molecular Medicine.  In this role, Lakshmi also provided strategic and managerial direction for the launch of the journal EBioMidicine.  In August 2017, Lakshmi became a Publishing Director with responsibility for several journals at Cell Press.  Before joining Cell Press, Dr. Goyal was a postdoctoral fellow at the Biology department at MIT.  She obtained her Ph.D. from Rutgers University, New Jersey USA.   Dr. Goyal holds a masters and bachelor’s degree from institutions in India.

This workshop is sponsored by UNC Training Initiatives of Biological and Biomedical Sciences (TIBBS) and the Graduate and Professional Student Federation (GPSF).

Graduate and Professional Student Federation


We hope to see you at our other SWAC Science Communication Certificate Series events!


Worlds Collide with Science and Art

Date: Wednesday, April 11th from 2-3:30 pm

Location: Bondurant Hall, Room 2030

Registration Link:

Some science stories are better told using art. Join us for a workshop showcasing the use of different types of art media to convey science to broad audiences. More details to come.

Writing Workshop: Inspiring Storytelling  

Date: April 17th from 2-3:30 pm

Location: TBA

Registration Link:

This year, we are putting a spin on our traditional blog writing workshop with a theme on storytelling. Why is storytelling important in science communication? How does one tell a good story? How can we use our own stories and experiences to communicate science beyond traditional reporting? During this interactive workshop, participants will not only go over best writing practices, but learn how stories can play a big role in their own work, produce a story-based blog post, and have the option to publish on SWAC’s blog The Pipettepen!


New: Special Summer Event! SWAC will host 1 event in the summer months that will count towards the required attendance. More details to come. If you are only one event short of earning the certificate, keep this in mind!

Mimicking Electric Eels to Provide Power to Medical Devices

The electric organ of eels has inspired researchers to develop biocompatible power sources that could be used to power medical devices

While the shock of an electric eel sounds like more of a medical nightmare than a fortunate asset, researchers at the University of Michigan were inspired to simulate the power of these slick creatures in hope of creating power sources for a variety of medical devices. With society’s heavy reliance on technology, it’s not surprising that medical treatments have continued to rely more and more on electrical devices including wearable and implantable sensors, pacemakers, and prosthetics. Just as with any piece of technology, these devices require an electrical power source. However, medical devices face the added requirement of being biocompatible, meaning they must function safely and effectively in the human body. Eel-inspired power sources may achieve this goal of being biocompatible while supplying medical devices with the electricity they need to function.  

The inspirational efficiency with which an eel uses its electrical shock, to help catch prey and protect itself against predators, is the result of natural selection. Electrophorus electricus, know commonly as a knifefish or an electric eel, possesses an electric organ that extends through the back 80% of its body. The organ contains parallel stacks of special cells called electrocytes. When a situation arises that warrants a shock from the eel, its nervous system generates an electric current by activating thousands of electrocytes at the exact same time. As the cells are activated, the positively charged sodium and potassium ions, in and around the cells, move toward the head of the eel. The movement of these ions allows each of the electrocytes to act like small batteries. The activated end that lost the ions has a negative charge, while the opposite side that acquired the sodium and potassium ions carries a positive charge. The battery-like cells can each generate a small, innocuous voltage (less than that of a AAA battery). But when combined, the eel’s shock can be over 600 volts! For reference, a US household outlet supplies 120 volts. While a significant portion of this voltage is lost to the water around the eel, its prey or attacker will still get a nasty shock.

By developing this work further, researchers hope to successfully use their artificial electric organ to run medical devices like pacemakers

The University of Michigan team has successfully created an artificial electric organ that can potentially be used by humans to power devices. To make the electrical power supply biocompatible, it was necessary to efficiently mimic the features of the eel’s electric organ. This was achieved by preparing hydrogel membranes that could be layered to replicate the structure of the organ. To mimic the movement of ions in and out of the cells, the hydrogels were filled with dissolved table salt, which is made of sodium and chlorine ions. Half of the cells were designed to allow only positively charged sodium ions out and the other half would only allow negatively charged chlorine ions to exit. The gels containing the salt water were alternated on the membrane sheet with gels containing pure water, which allows the sodium and chlorine to move in opposite directions. This flow of ions generates an electric charge with an electrical potential of 110 volts. While this voltage is less than that of the inspirational eel organ, in its current state the artificial organ may be sufficient to power some low-power devices.

Though pleased with the engineering of a potentially biocompatible power source, the researchers acknowledge that there are plenty of opportunities to improve its design. By increasing the efficiency of these artificial organs, researchers believe their utility will increase, as they will become more suitable for use in combination with implantable devices.

Peer edited by Erika Van Goethem.

Follow us on social media and never miss an article:

The Science Behind Spitting for your At-home Genetic Test

Conjuring up two milliliters of spit after not eating/drinking 30 minutes prior doesn’t sound taxing, but give it a try, and you’ll quickly change your mind. Four years ago, I sat in my kitchen wafting the scent of freshly baked brownies into my face in an attempt to make myself salivate. Voilá! I finally produced enough spit for my 23andMe kit and rewarded myself with a brownie. In 6-8 weeks, I would learn more about my health and ancestry, all thanks to just two milliliters of saliva. Best Christmas gift ever…thanks, mom and dad!

Popularity for these at-home genetic testing kits has soared in recent years. For example, AncestryDNA sold about 1.5 million kits in three days alone last fall. People love buying these DNA kits as a holiday gift, and it’s one of Oprah’s favorite things, so why wouldn’t you want to purchase one? Given the general affordability of these non-invasive tests and the variety of kits to choose from, it’s easy to participate in the fun. &

After scientists receive your at-home genetic kit, they isolate cells from your saliva and unravel the chromosomes in your DNA. Then they read your base pairs like a book and check for specific genetic markers that indicate risk of a certain disease. Your ancestry is determined by comparing your genetic markers to a reference database.

I’m amazed that information about my ancestors’ migration pattern is extracted from the same fluid that helped disintegrate the brownie I just ate. In addition to the enzymes that aid in digestion, human saliva contains white blood cells and cells from the inside of your cheeks. These cells are the source of DNA, which is packaged inside your chromosomes. Humans carry two sex chromosomes (XX or XY) and 22 numbered chromosomes (autosomes). Chromosomes are responsible for your inherited traits and your unique genetic blueprint. During a DNA test, scientists unravel your chromosomes and read the letters coding your DNA (base pairs) to check for specific genetic markers.

Companies perform one or multiple kinds of DNA tests, which include mitochondrial DNA (mtDNA), Y-chromosome (Y-DNA), or autosomal DNA. An mtDNA test reveals information about your maternal lineage since only women can pass on mitochondrial DNA. mtDNA codes for 37 out of the 20,000-25,000 protein-coding genes in humans. Y-DNA test is for male participants only and examines the paternal lineage. This DNA accounts for about 50-60 protein-coding genes. Autosomal DNA testing is considered the most comprehensive analysis, since autosomes include the majority of your DNA sequences and the test isn’t limited to a single lineage. However, companies don’t fully sequence your genome because then the at-home kits could no longer be affordable. Instead the tests look at about 1 million out of 3 billion base pairs.

But how reliable are these tests if less than one percent of your DNA is sequenced? When detecting genetic markers that could increase disease risk, these tests are very accurate since scientists are searching for known genes associated with a certain disease. However, the reliability of predicting your ancestry is another story.

Using DNA to determine ethnicity is difficult since ethnicity is not a trait determined by one gene or a combination of genes. Scientists analyze only some of your genome and compare those snippets of DNA to that of people with known origins. For example, Ancestry uses a reference panel that divides the world into 26 genetic regions with an average of 115 samples per region. If your results show that you’re 40% Irish, then that means 40% of your DNA snippets is most similar to a person who is completely Irish. Each company has their own reference database and algorithm to decide your ethnic makeup, so it’s likely that you would receive different results if you sent your DNA to multiple companies.

At-home genetic tests are an exciting and affordable way to explore the possibilities of your genetic makeup and can paint a general picture of your identity. While the specifics of the ethnicity results may be a bit unreliable, at least it’s a good starting point if you’re interested in building your family tree!

Peer edited by Nicole Fleming.

Follow us on social media and never miss an article:

The Curious Life of Plants: Exploring the Science within the Garden Walls

Cortney CavanaughThe science that plants rely on goes far beyond photosynthesis, the familiar process where plants use sunlight to help make food. In honor of spring’s pending arrival, it’s time to delve into three, unique cases where science influences the plants that color our lives.

The Power of pH

A bitter cup of burnt coffee or a sour lemon wedge can stimulate an intense response from a diner. Just as with humans, plants can respond in curious ways to the acidity (sourness) or basicity (bitterness) of the soil they live in. The acidity and basicity of soil is directly related to its pH. This characteristic is measured in pH units, on a scale that runs from 0 to 14, where 7 is neutral. Values below 7 represent an acidic environment and those above 7 indicate that the soil is basic. While these values can vary based on rainfall and the components of the soil, the typical range falls between 3 and 10, with most plants preferring a pH of 6.5.

pH indicator paper

In the plant world, soil pH can have huge consequences. The acidic or basic nature of the soil has a strong influence on whether a plant can absorb the nutrients that surround it. Plants require many elements to survive, including nitrogen, calcium, sulfur, and magnesium. While these nutrients are generally abundant in the earth, a plant may be unable to take them in if the pH is not sufficiently acidic or may take in too much if it is too acidic. A plant suffering from an iron deficiency may exhibit a yellow coloring of its leaves. In this case, there is likely enough iron in the soil but the pH is too high (basic) and the iron does not exist in a form that the plant is capable of absorbing. When the pH is too low, plants may begin to absorb too much of their required nutrients, at poisonous levels, or may even begin to absorb some components of soil that are toxic to plants. As with humans, nutrients are necessary for a plant’s survival, but an overdose, or an insufficient intake, can be problematic. In the case of plants, symptoms of this imbalance usually include the discoloration and death of leaves.

It is apparent that maintaining an appropriate soil pH is necessary for a plant’s health, but given the fact that pH levels can vary based on location and yearly rainfall, it is critical to monitor these levels. While there are commercially available digital monitors, one of the easiest methods to check to the pH is through the use of litmus paper. These strips of paper, treated with dyes, change colors based on the pH of the environment. Interestingly, a plant-based version of this litmus paper exists in many gardens. It turns out that the blooms of the very popular Hydrangea macrophylla, or the bigleaf hydrangea, will change colors in response to the pH of the soil. It has long been known that the blooms will turn blue in the presence of acidic soil and shift to a red/pink color when the soil is basic. A variety of home remedies can be used to change the pH of the soil. Adding vinegar or citrus peels to the soil can make the soil acidic and give the blooms a blue color, while powdered limestone results in basic soil and a red hydrangea.

When the pH of the soil is low, aluminum ions become available, and the hydrangea blooms are blue

When the pH of the soil is high, and aluminum ions are unavailable, hydrangea blooms display a pink-red color

While many experienced gardeners are familiar with this age-old practice, research over the past decade has begun to reveal that the chemistry behind the colors of the hydrangea goes beyond a simple change in pH and is directly related to the amount of positively charged aluminum ions that the plant can absorb from the soil. When there are no aluminum ions in the hydrangea, the flowers will maintain a red color. This is the result of one type of anthocyanin pigment, a colored molecule, which is present in the bloom. When the pH is lower, and the soil is acidic, the aluminum ions exist in a form that allows them to be absorbed by the roots and carried up to the bloom where they can react with the colored anthocyanin molecule to turn it blue. Basic soil, such as that treated with limestone, causes the aluminum ions to get tied up and prevents them from entering the bloom so the color change doesn’t occur. As a result, the best way to get and maintain blue hydrangeas is to treat the soil with an appropriate amount of aluminum sulfate. This will create an environment that is sufficiently acidic with enough aluminum ions to cause a color change, though this process will take multiple growing seasons. The color change, along with the levels of aluminum ions found within a blue bloom, demonstrate that the color-changing capability of the hydrangea plant is actually a measure of available aluminum ions in the soil, which is directly related to the soil’s pH.

“Life Finds a Way”

When the soil does not provide plants the nutrients they need to survive, certain species will adjust to fit their environment. Commonly, plants will develop specialized leaves that help them to survive despite poor soil quality. One of the liveliest examples of these leaves belong to carnivorous plants, which rely on trap-style leaves to catch their prey and special chemicals, called enzymes, to digest them. The ability to absorb nutrients from prey gives carnivorous plants the chance to exist in wetlands, where the average plant would die after being unable to access essential nutrients from the soil.

Hair-like triggers sense when prey enters the Venus flytrap

The Venus flytrap is likely the most well known among carnivorous plant species. While most would associate these bug-eating plants with exotic, swampy-jungle locations, their only native habitat is actually southeastern North Carolina and northeastern South Carolina! Their bizarre ability to trap insects and small amphibians comes at a price. A significant amount of energy is required to trap and digest their prey. To prevent unproductive closing events, the Venus flytrap has a method to differentiate between a brush with prey and a false alarm. The trap is lined with hair-like structures that can sense when they are being touched. Research has shown that the plant is able to keep track of how many hair-like sensors have been touched, in a short range of time, and can recognize if there is a struggling bug in its grasp. After two sensors have been touched, a hormone called jasmonic acid is released and an electrical signal is sent through the leaf, causing the trap to snap shut and catch the prey. After the prey has touched five sensors, the plant quickly releases its digestive enzymes, which help the flytrap to absorb the nutrients from its meal. While the small creature likely stands no chance to survive the interaction, the Venus flytrap’s survival is also at risk due the large amount of energy it uses to obtain its meal. Ominously, the flytrap is only capable of closing its trap about four or five times without catching its prey before the plant dies.

Exploring a Friendship at its Roots

Orchids depend on a relationship with the fungi around its roots for survival

Though they are highly desired for their vibrant blooms, orchids are notorious for being one of the most difficult plants to maintain. While they are often considered one of the easiest domestic plants to kill, orchids are also considered fragile in the wild. Their sensitivity to changes  make orchids excellent indicators of environmental change, but sadly, it has also caused the plants to become endangered. This fragility results from the reliance of orchids on their ecosystem, or the entire community of interacting organisms around them. Research from the Smithsonian Environ­mental Research Center, has shown that orchids rely on the presence of fungi at their roots. The teamwork exhibited by the plant and fungus is an example of a symbiotic relationship in which both members benefit. While the fungi are provided with a moist, nutrient-rich home at the plant’s roots, the orchid receives help from the fungi to take in nourishment when photosynthesis is difficult. Orchids take advantage of the fact that the fungus is able to take the organic matter in soil and break it down into simple molecules, like sugar, that the orchid can then absorb for energy. It has been discovered that all orchids depend on this very relationship. In fact, an orchid will not begin to grow until the fungus enters the plant’s seed, as it is the only source of energy for the developing plant. As the plants mature, they are believed to still rely on this relationship as an alternative food source when sunlight is sparse. There is still a lot to learn about the reliant relationship between orchids and fungi, but what is certainly known about these fragile plants is that their ability to survive is a direct result of a healthy and flourishing ecosystem.  

The life of plants is much more complicated than most people consider. In order to survive, plant species must develop creative ways to adapt to changes in their environment over time. Seeing these ingenious beauties firsthand may be the best way to appreciate them and fortunately, a wide variety of unique plants can be found on display at local spaces including the North Carolina and Duke botanical gardens.

Peer edited by Richard Hodge and Ann Marie Brasacchio.

Follow us on social media and never miss an article:

Science Communication, Advocacy and the Federal Budget

Scientific societies, such as ASBMB, provide opportunities for trainees to travel to Washington, D.C. and meet with policymakers.

Recently, the federal budget for the fiscal year (FY) 2019 (beginning October 1st, 2018) was released. Shockingly, the initial plan called for brutal cuts to basic research funding agencies—slashing the budget of the National Institutes of Health (NIH) and the National Science Foundation (NSF) by 27% and 29%, respectively. While Congress subsequently lifted spending caps to compensate for these losses, the budgets of both the NIH and NSF will now remain stagnant at levels for FY2017.

Although catastrophic funding losses have been avoided, these flat budgets are still worrisome. When adjusted for inflation, a stable budget equates to a decrease in funding.  Furthermore, three health research institutes currently located in the Agency of Healthcare and Human Services and the CDC will be terminated and their successors will be created within the NIH. The relocation of these institutes without an increase in NIH funding will further strain the budget.

Numerous scientific societies have responded with criticism to the federal government’s budget proposal. A statement from The Society for Neuroscience (SfN) highlighted the public’s support for scientific research funding and emphasized that adequate funding is critical to combat devastating diseases, such as Alzheimer’s. Likewise, a press release from the American Society for Biochemistry and Molecular Biology (ASBMB) expressed concern regarding America’s ability to lead in science and innovation amidst stagnant funding.

Educating elected officials on the importance of scientific research is a key focus of scientific societies. ASBMB sponsors an opportunity for graduate students and postdocs to travel to the capital and meet with Congress through their annual Hill Day. Societies also encourage local action. For example, the American Society for Cell Biology (ASCB) compiles an advocacy toolkit to guide members through the process of contacting local representatives, scheduling meetings and organizing lab tours. On the UNC campus, the Science Policy Advocacy Group (SPAG) is a resource for graduate students and postdocs to gain skills in science communication and advocacy through outreach events, workshops and seminars.     

At the core of science advocacy is the ability to communicate why science is necessary. While the significance of developing new cancer therapies is clear, the importance of basic science research is still often misunderstood. Basic science research is often described as “curiosity-driven” and asks fundamental questions such as: “How do cells move?” This basic research provides a thorough understanding of cellular processes that is critical for later medical innovations. In the 1990s, Yoshinori Ohsumi observed an unusual structure in yeast cells when he starved them. His work in yeast was essential for uncovering the mechanism behind autophagy, a recycling pathway in the cell. Today, researchers know that defects in autophagy result in cancer, Parkinson’s Disease and Type 2 Diabetes, and Ohsumi was awarded the Nobel Prize in Medicine in 2016.

Ohsumi’s story demonstrates that breakthroughs in basic science are critical for breakthroughs in medicine. Yet, proper funding must be secured before further innovations in either field can occur. As a result, it is critical to create a culture that both understands and values scientific research.

Peer edited by Kelsey Miller.

Follow us on social media and never miss an article:

Improbable Science: The Ig® Nobel Prize (Permission granted by Marc Abrahams - editer and founder of Ig Nobel Prizes)

“The Stinker”: The official mascot of the Ig Nobel Prizes

When you think of scientific research that is worthy of international recognition, 10 trillion dollars, and a prize handed out by Nobel laureates, you are probably envisioning high-impact research that helped revolutionize its field. Unfortunately, the international recognition is not for the right reasons, the 10 trillion dollars is from Zimbabwe and is worth roughly 30 US dollars, and the Nobel laureates might be laughing as they hand out the prizes. The Ig® Nobel Prize is awarded annually to ten different people in ten different categories. The prize is intended to honor achievements in scientific research that first make people laugh, and then make them think.

Started in 1991 by Marc Abrahams, the Ig® Nobel Prizes are awarded every September at Harvard University. The winners are kept secret until the ceremony, where 1200 spectators cheer on the recipients for their discoveries. Looking back at previous winners can help one get a sense of what kind of research fits the criteria for this prize. The 2017 Ig® Nobel Prize in Medicine focused on using brain-scanning technology (fMRI) to measure how disgusted people are by cheese, while the 2015 Mathematics prize was awarded for mathematically determining whether and how Moulay Ismael the Bloodthirsty, an emperor who reigned Morocco from 1697 to 1727, was able to father 888 children. My personal favorite was the 2005 Chemistry Prize, which attempted to settle the debate of whether people can swim faster in syrup or in water. For more laughs, check out previous winners!

A live frog levitates in a magnetic field (2000 Ig Nobel Prize in Physics)

With 2017 behind us, we can all look forward to the announcement of the 2018 winners later this year. The event is broadcast live on the internet, with additional coverage provided by NPR’s Science Friday. If you believe your research is worthy of an Ig® Nobel (hopefully it isn’t!), you can send nominations to (10-20% of the 9000 nominations every year come from self-nominations). If you happen to be nominated, you will be invited to attend the ceremony, but at your own expense! Don’t feel too self-conscious if you find yourself in this scenario. You can take comfort in knowing that Sir Andre Geim, the winner of the 2000 Physics Ig® Nobel (which he won for using magnets to levitate a frog), also won the Nobel Prize in 2010. Regardless of who wins, it is fun to follow the motto of the Ig® Nobels’, “celebrate the unusual, honor the imaginative, and spur people’s interest in science.”

Peer edited by Bailey DeBarmore.

Follow us on social media and never miss an article:

Epigenetics: The Software of the DNA Hardware

Scientists identified the genes of the human genome to understand how the genes influences the function and physical characteristics of human beings.

The Human Genome Project (HGP) was an amazing endeavor to map the full human genome, and so intense an effort that it required an international collaborative research team. One of the ultimate goals of this project was to shed light on human diseases and find the underlying genes causing these health issues. However, the HGP ended up creating more questions than answering them. One thing we found out is that most diseases are complex diseases, meaning that more than one gene causes the disease. Obesity is one such example of a complex disease. This is in contrast to cystic fibrosis which is a disease caused by a mutation in a single gene. To further complicate diseases, there are gene and environment interactions to consider. A gene-environment interaction is a situation in which environmental factors affect individuals differently, depending on their genotype or genetic information. The possible number of gene-environment interactions involved in complex diseases is daunting, but the HGP has given us the information necessary to start better understanding these interaction.

Although the HGP did not end up giving us the answers we were looking for, it pointed us in the direction we needed to take. We needed to consider the role of environmental factors on human health and disease. For not only are complex diseases not fully explained by genetics alone, but another aspect of these diseases remains unexplained by genetics: the health disparities seen within diseases like obesity, diabetes, cancer, etc. The HGP showed us that not all diseases are caused by single mutations and that genetic diversity does not explain the differences in health outcomes. The environment plays a big part.

Epigenome  is the software that controls gene expression to make the different cells that make up the human body.

Gene-environment interactions begin to answer why genetics alone cannot explain  varying health outcomes by considering that the environment may have varying effects on our genetic data. However, there is another dimension to our genetic background that could better answer why genes often can’t be mapped directly to a disease. Imagine that our genome is our computer hardware, with all the information necessary to create the cells we are composed of. However, something needs to configure the genome to differentially express genes so as to make skin and heart cells from the same DNA. Skin and heart cells have the same information (DNA) in their nucleus but only express what’s necessary to function as a skin or heart cell. In other words, software is needed for the hardware. For us, that software is the epigenome. The epigenome consists of a collection of chemical compounds, or marks, that tell the genome what to do; how to make skin and heart cells from the same information. The epigenome, unlike the genome, is flexible. It can change at key points in development and even during the course of one’s lifetime. This flexibility makes the epigenome susceptible to environmental factors and could explain: (1) Why our genome alone cannot explain the incidences of diseases such as obesity, (2) the health disparities within these complex diseases, and (3) the transgenerational inheritance of complex diseases like metabolic syndrome, defined as a cluster of conditions such as high blood pressure and high blood sugar that increase your risk for heart disease and diabetes.

Now of course, the more we find out the more questions are left unanswered. As stated before, the epigenome can change due to lifestyle and environmental factors which can prompt chemical responses. However, the mechanisms by which things like diet and smoking induce these chemical responses is unclear. But researchers have started to fill in the gap. For example, certain types of fats, like polyunsaturated fatty acids (corn oil is high in these), can generate highly reactive molecules and oxidative stress, which can cause epigenetic alterations. Tobacco smoke contains a mixture of chemicals that have been independently investigated with mixed results on the epigenetic effects. Psychological stress, more specifically child abuse, has been seen to cause increased methylation (a sort of mark on the genome) of a receptor for hormones responsible for metabolism (glucocorticoid receptor) in suicide victims. This has also been seen in mouse models where higher maternal care of pups decreased methylation of the glucocorticoid receptor. Increased methylation usually decreases the expression of the glucocorticoid receptor, and decreased methylation would increase the glucocorticoid receptor’s expression.

The HGP was an amazing endeavor of science and has given us amazing insight into the structure, organization, and function of the complete set of human genes. It has also helped point us in a new direction to better understand chronic diseases and seek to find the solutions to address the burden of disease.

Peer edited by Mejs Hasan and Emma Hinkle.

Follow us on social media and never miss an article:

The Perfect Storm

Hurricane Maria caused significant damage to Puerto Rico in September 2017. Image by Antti Lipponen.

There is a trend with recent natural disasters: out of the media, out of mind. Hurricanes Harvey, Irma and Maria all had major impacts on the US in 2017 (and yet I could only remember 1 of 3 names off the top of my head!). Once the non-stop media coverage ceases and calls for donations lose steam, we continue on with our lives without a second thought. However, these storms have lasting impacts which can radiate far beyond the directly affected areas.

When Hurricane Maria hammered the island of Puerto Rico, nearly all the territory lost power (see image). The outages affected both residents and businesses, including all 3 manufacturing facilities operated by Baxter, a critical provider of hospital products for the mainland US. Baxter is the major source of several heavily used products including sterile saline (sodium chloride 0.9%), and IV tubing and bags. Saline bags are used for patient rehydration as well as dilution of many IV drugs.

Comparison of lights at night in Puerto Rico before (top) and after (bottom) Hurricane Maria

In the wake of Hurricane Maria’s destruction last September, production at the Baxter plants was at a stand-still. The FDA released a statement regarding the potential impact of the shortage, and even worked to get critical Baxter facilities priority for re-establishing electric power. Drug shortages are nothing new, and the FDA acknowledged in their press release that saline bags have been in shortage since 2014. But the drop in availability of basic supplies such as saline has many hospitals, including those in the Triangle, scrambling to adapt.

Exacerbating the situation, the shortages have coincided with an unusually vigorous flu outbreak and a spike in hospitalizations. As population densities increase, disease epidemics are more likely to occur, so issues such as drug shortages and over-filled hospitals will continue to occur (also see David Abraham’s post for more on the challenges of flu season). For example, the severity of the current flu season has also led to shortages of flu medication for children.

Kendra Connelly

A pharmacy technician prepares drugs in a sterile hood

Pharmacies do their best to cope, and behind the scenes are talented pharmacists, nurses and administrators working to keep operations running as normal as possible, with little impact on real-time patient care. To reduce saline bag usage, normal pharmacy protocols can sometimes be modified. This may include manually injecting drugs normally administrated by drip, switching to oral medications, and preparing drugs in different types of bags. Fortunately, all 3 Baxter plants are back online and will soon catch up with production.

In the absence of a familiar “Made in China” sticker, most people don’t consider the origin of many products in their life. And while the current drug and supply shortage cannot be compared to the ongoing suffering of those living in hurricane affected areas, the perfect storm came together to cause lasting and far-reaching effects of the latest hurricane season. Communities directly affected by Maria are still dealing with the challenges of rebuilding and likely will be for some time, but hopefully highlighting these situations will serve as a reminder to the rest of us of the lasting impact of natural disasters.

Peer edited by Hannah Perrin.

Follow us on social media and never miss an article:

Space Travel is Possible with the Sound of Light

Optical communication devices may be the first step in space travel.

Technology moguls dream of human colonies on other planets. For this dream to become reality, science needs to develop new spacecraft capable of transporting people and cargo to the outer reaches of our galaxy. Another challenge is how to find a route to these other planets.  We can’t just use Google Maps. Space travelers would have to navigate around comets, space debris, or orbiting planets.  Complex models and communications developments would be needed to move through galaxies safely and quickly.

Light-based communication is desirable because it can transmit more data per second while producing significantly less heat. This means that less energy is spent cooling equipment, making the it more efficient to run compared to conventional electron-based communication.

Similar to how electronic devices maneuver electrons through a computer chip, photonic devices maneuver light for optical communication. Normally, a magnetic field is required to produce a change in optical properties necessary for one-way light propagation. However, the size of magnets are too large to be incorporated efficiently into nanoscale devices. To address this problem, University of Illinois researchers created a nanoscale photonic device called an optical isolator, using sound waves instead of magnets for one-way light guidance.

Erika Van Goethem

Cartoon of optical device

The optical isolator device is made from aluminum nitride. A radio frequency driver (RF driver) generates a radio frequency signal that is used to create a sound wave. The RF signal is applied to an IDT, consisting of two interlocking comb-shaped arrays of metallic electrodes that convert electrical signals into surface sound waves. The grating couplers allow the light, generated by a laser, to enter into the device from one direction.  The light travels along the optical waveguides and is transferred from one optical band to another, interacting with the previously converted sound waves. Light is able to pass through the device when the shape of the light wave matches the shape of the sound wave going in the same direction. However, light waves going in the opposite direction of sound waves are absorbed by the device and are unable to pass through, thus maintaining the one-way propagation of light.

This new device allows for a more reliable and sensitive transfer of information that can be used in devices such as atomic clocks and GPS.  Such innovations may be the first step toward developing deep space navigation and travel.

Peer edited by Portia Flowers.

Follow us on social media and never miss an article: