Honey Bees: Conservation Icon or Environmental Problem?

Bzzzzztt! Oh, sorry. That was just the sound of another honey bee dying. Seriously though, honey bee populations are crashing all over the world – we’ve lost nearly 60% of honey bee colonies since the 1970s. But there’s good news! Honey bees might be on the verge of making a comeback. Numerous conservation agencies and local businesses are making hard attempts to increase the number of honey bee colonies in all sorts of places – Barack Obama even launched a special task force in 2014! So, with all these good bee-vibes, why did one prominent bee researcher write a perspective article in Science poo-pooing the spread of honey bees as conservation icon? Let’s break it down.

https://www.flickr.com/photos/usgsbiml/34240025053/in/photolist-eenRKb-krfu9P-gkdW7q-eecLmq-ee75bt-ghnAju-gkdBS7-eecL6L-gkdV6Y-ghnDb1-o3mrPi-nBR2iN-nLb438-o5qWJe-UTSk1U-UTS5DN-U7KeYY-UaF5xx-V9MmSw

Apis mellifera, the European honey bee and maybe your best friend?

Get to the point. What’s the problem?

Sure, right away. As mentioned above, honey bees are vanishing at an alarming rate. Much of this phenomenon is associated with something called Colony Collapse Disorder (CCD). One day, all the bees are happy and making honey, then the next the workers have suddenly vanished and abandoned their queen and hive. In a frustrating turn of events, nobody knows quite what is causing CCD. Many experts believe CCD is attributed to a variety of factors: increased use of pesticides, a virus-harboring parasite, poor nutrition, climate change, and even cell phones (OK, you caught me: that last one isn’t widely supported). At this point, about 40-50% of established hives don’t survive to the next year – a significant change from decades past. If this worrisome trend continues, honey bee populations could plummet with a cascade of consequences.

Do honey bees really matter, though? I hardly eat honey.

Great rhetorical question (and also, what’s wrong with you?)! Honey bees are indispensable to our nation’s agriculture. While several staples of American agriculture such as wheat and corn are wind-pollinated, many others need help from other organisms to spread their pollen from one flower to the next. In fact, honey bees are essential for the pollination and production of a huge variety of crops such as apples, cantaloupes, almonds, and avocados. Honey bee-pollinated foods contribute more than 15 billion dollars to the US agricultural economy and their continued decline could increase consumer costs of these foods to ten times their current price.  

Honey bee products also make up their own economy. Honey produced by American beekeepers is a 300-million-dollar industry, while hive by-products such as beeswax, have niche markets as well (who here hasn’t heard of Burt’s Bees?).

https://www.pexels.com/photo/bee-on-flower-811691/

Honeybees play an essential role in the reproductive cycle for many flowers and plants that produce our food

The benefits of managed hives aren’t limited to large scale commercial farmers or beekeepers. Many people report that keeping bees improves the health and vibrancy of their own gardens. Consuming locally-produced honey might (emphasis on might) also help with allergies, attuning your body to the pollens it’ll be lambasted with in spring and fall. Local hives also present a fantastic opportunity to teach lessons about biology to students of any age – did you know honey bees are actually the only domesticated superorganism? (Don’t know what a superorganism, is? Look here. See, learning opportunity!)

Ok, so what’s up with this anti-honeybee article? Is the guy just a jerk?

Dr. Jonas Geldmann is actually a renowned conservation researcher at the University of Cambridge, and probably a great guy! His recent perspectives article in Science highlights a growing concern among environmental conservationists. While honey bees are fascinating and powerful machines of agriculture, high densities of managed hives also present an environmental quandary. A growing body of research suggests that domesticated honey bees, with up to 60,000 bees in a hive, may be harmful to their wild, native neighbors. Honey bee hives require huge amounts of nectar and pollen to stay healthy and produce honey, potentially placing them in direct competition with native pollinations for food. Additionally, honey bee hives can become incubators for parasites and pathogens that can be directly transmitted to other bee and insect species, impacting their health and fertility. While the jury’s still out, the accumulating evidence suggests that introducing honey bee hives can measurably reduce local populations of native bee species, which can have negative impacts on the local environment.

https://commons.wikimedia.org/wiki/File:Rhododendron_canescens_43zz.jpg

Piedmont azalea (Rhododendron canescens) is native to North Carolina

Native pollinators, which include thousands of distinct bee species as well as butterflies, moths, bats, flies, ants, and birds, are also capable of performing a significant portion of the pollination needs of both agricultural and non-agricultural plants. In many cases, native plant species have uniquely adapted to be efficiently pollinated by their native pollinators. A beautiful example of this is the flowering azaleas, which bloom in the early spring. Unlike many flowering plants, azalea pollen is hidden deep inside their flowers – where only native bees know to look.­­­­­ North Carolina is home to several native species of deciduous azaleas, none of which can be pollinated by domesticated honey bees. Similarly, crop plants such as squash, alfalfa, and blueberries all have native bee species that are significantly more efficient at fulfilling their pollination needs than their domesticated relatives.

Unfortunately, many native pollinators are experiencing serious population declines similar to the honey bee. For evidence, we only have to look back at the agriculture industry. In the past, native pollinators were the sole source of pollination for many of the food crops that are now completely reliant on managed honey bee hives. While the honey bee has done a fantastic job of keeping these foods from vanishing off our shelves, it won’t be able to maintain the diversity of our nations flora alone. It is imperative that we keep our native pollinators in mind when discussing conservation efforts and adopt policies that promote the health and wellbeing of both native and domesticated bee species.

What can you do?

Fear not, for all is far from lost! Helping out is simple! Native and domesticated species of bee both struggle with some of the same issues: a lack of resources (nectar and pollen) and exposure to pesticides. When buying plants for your own garden, look for native species that produce plenty of nectar and pollen (also known as bee-food!) and ensure that they are pesticide free. If you’re feeling overwhelmed, contact your local beekeepers association or honey bee researcher – they will often have resources available such as this one from the North Carolina Cooperative Extension. While tending your garden, try to avoid using pesticides and only use natural, bee-friendly ones if you must – many local garden supply stores will carry such products. There are also ways to help if you aren’t an avid gardener! In an ideal world, we’d all buy locally-sourced, pesticide-free produce (which you can do! Talk to growers at your local farmers market about their practices), but that process can be a bit daunting. While imperfect, USDA certified organic foods are grown using naturally-sourced pesticides (like raw copper or sulphur), which likely aren’t as toxic to local pollinators. By sticking to these practices, anyone can promote the health of native pollinators and honey bees, alike.

Peer edited by Erica Wood.

Follow us on social media and never miss an article:

The Perfect Storm

https://www.flickr.com/photos/150411108@N06/37178284932

Hurricane Maria caused significant damage to Puerto Rico in September 2017. Image by Antti Lipponen.

There is a trend with recent natural disasters: out of the media, out of mind. Hurricanes Harvey, Irma and Maria all had major impacts on the US in 2017 (and yet I could only remember 1 of 3 names off the top of my head!). Once the non-stop media coverage ceases and calls for donations lose steam, we continue on with our lives without a second thought. However, these storms have lasting impacts which can radiate far beyond the directly affected areas.

When Hurricane Maria hammered the island of Puerto Rico, nearly all the territory lost power (see image). The outages affected both residents and businesses, including all 3 manufacturing facilities operated by Baxter, a critical provider of hospital products for the mainland US. Baxter is the major source of several heavily used products including sterile saline (sodium chloride 0.9%), and IV tubing and bags. Saline bags are used for patient rehydration as well as dilution of many IV drugs.

https://commons.wikimedia.org/wiki/File:Puerto_Rico_at_night_before_and_after_Hurricane_Maria.jpg

Comparison of lights at night in Puerto Rico before (top) and after (bottom) Hurricane Maria

In the wake of Hurricane Maria’s destruction last September, production at the Baxter plants was at a stand-still. The FDA released a statement regarding the potential impact of the shortage, and even worked to get critical Baxter facilities priority for re-establishing electric power. Drug shortages are nothing new, and the FDA acknowledged in their press release that saline bags have been in shortage since 2014. But the drop in availability of basic supplies such as saline has many hospitals, including those in the Triangle, scrambling to adapt.

Exacerbating the situation, the shortages have coincided with an unusually vigorous flu outbreak and a spike in hospitalizations. As population densities increase, disease epidemics are more likely to occur, so issues such as drug shortages and over-filled hospitals will continue to occur (also see David Abraham’s post for more on the challenges of flu season). For example, the severity of the current flu season has also led to shortages of flu medication for children.

Kendra Connelly

A pharmacy technician prepares drugs in a sterile hood

Pharmacies do their best to cope, and behind the scenes are talented pharmacists, nurses and administrators working to keep operations running as normal as possible, with little impact on real-time patient care. To reduce saline bag usage, normal pharmacy protocols can sometimes be modified. This may include manually injecting drugs normally administrated by drip, switching to oral medications, and preparing drugs in different types of bags. Fortunately, all 3 Baxter plants are back online and will soon catch up with production.

In the absence of a familiar “Made in China” sticker, most people don’t consider the origin of many products in their life. And while the current drug and supply shortage cannot be compared to the ongoing suffering of those living in hurricane affected areas, the perfect storm came together to cause lasting and far-reaching effects of the latest hurricane season. Communities directly affected by Maria are still dealing with the challenges of rebuilding and likely will be for some time, but hopefully highlighting these situations will serve as a reminder to the rest of us of the lasting impact of natural disasters.

Peer edited by Hannah Perrin.

Follow us on social media and never miss an article:

Understanding the 2017 Climate Science Special Report

Earlier this year, the U.S. government released the Climate Science Special Report.  This document describes the state of the Earth’s climate, specifically focusing on the U.S.  If you are someone who is interested in environmental science or policy, you may have thought about reading it.  But where to start? The report contains fifteen chapters and four additional appendices, so reading it may seem daunting.  We published this summary of the report to provide a brief introduction to climate change, and to provide a starting point for anyone who wants to learn more.  

https://www.nps.gov/articles/glaciersandclimatechange.htm

Retreating of Lyell Glacier (Yosemite National Park) in 1883 and 2015. Park scientists study glaciers to understand the effects of climate change in parks serviced by the National Parks Service. 1883 Photo: USGS Photo/Israel Russell 2015 Photo: NPS Photo/Keenan Takahashi

 

 

 

 

 

 

 

 

 

 

 

 

What is Climate Change?      

“Climate change” is a phrase that has become ubiquitous throughout many aspects of American and global society, but what exactly is climate change?

Like weather, climate takes into account temperature, precipitation, humidity, and wind patterns.  However, while weather refers to the status of these factors on any given day, climate describes the average weather for a location over a long period of time.  We can consider a climate for a specific place (for example, the Caribbean Islands have a warm, humid climate), or we can consider all of Earth’s climate systems together, which is known as the global climate.

Depending on where you live, you may have seen how weather can change from day to day.  It may be sunny one day, but cool and rainy the next.  Climate change differs from changes in weather because it describes long-term changes in average weather. For example, a place with a changing climate may be traditionally warm and sunny, but over many years, become cooler and wetter.  While weather may fluctuate from day to day, climate change is due to gradual changes that occur over long periods of time.  Climate is viewed through an historical lense, comparing changes over many years. Though we may not notice the climate changing on a daily basis, it can have drastic effects on our everyday lives.  It can impact food production, world health, and prevalence of natural disasters.

https://commons.wikimedia.org/wiki/File:Effects_of_global_warming,_plotted_against_changes_in_global_mean_temperature.png

Summary of the potential physical, ecological, social and large-scale impacts of climate change. The plot shows the impacts of climate change versus changes in global mean temperature (above the 1980-1999 level). The arrows show that impacts tend to become more pronounced for higher magnitudes of warming. Dashed arrows indicate less certainty in the projected impact and solid arrows indicate  a high level of certainty.

What Causes Climate Change? 

The major factor determining the Earth’s climate is radiative balance.  Radiation is energy transmitted into and out of the Earth’s atmosphere, surface, and oceans.  Incoming radiation most often comes from light and heat energy from the Sun.  Earth can lose energy in several ways.  It can reflect a portion of the Sun’s radiation back into space.  It can also absorb the Sun’s energy, causing the planet to heat up and reflect low-energy infrared radiation back into the atmosphere.  The amount of incoming and outgoing radiation determines the characteristics of climate, such as temperature, humidity, wind, and precipitation.  When the balance of incoming and outgoing radiation changes, the climate also changes.

https://commons.wikimedia.org/wiki/File:Earth%27s_greenhouse_effect_(US_EPA,_2012).png

Scientists agree that it’s extremely likely that human activity (via greenhouse gas emissions) is the dominant cause of the increase in global temperature since the mid-20th century.

There are some natural factors that can influence climate.  The main ones are volcanic eruptions and the El Niño Effect.  Volcanic eruptions emit clouds of particles that block the Sun’s radiation from reaching the Earth, changing the planet’s radiative balance and causing the planet to cool. The El Niño Effect is a natural increase in ocean temperature in the Pacific Ocean that leads to other meteorological effects.  The increase in ocean temperature off the coast of South America leads to higher rates of evaporation, which can cause wind patterns to shift, influencing weather patterns worldwide. Together, these factors influence climate, so when they differ from the norm, they can contribute to climate change.

It is true that climate change can occur naturally and it is expected to happen slowly over long periods of time.  In some cases, the climate can change for a few months or years (such as in the case of a volcanic eruption), but the effects of these events are not long-lasting.  However, since the Industrial Era, the factor contributing most to climate change has been an anthropogenic driver, meaning one that is being caused by human activity. The primary cause of climate change since the Industrial Era has been the presence of greenhouse gases in the atmosphere.  The main greenhouse gases are carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O).  These gases are problematic because they remain in the Earth’s atmosphere for a long time after they are released.  They trap much of Earth’s outgoing radiation, leading to an imbalance of incoming and outgoing radiation energy.  Because the Earth’s atmosphere is holding on to all that energy while still receiving irradiation from the Sun, the planet heats up.  This is called the greenhouse effect, because it is similar to what happens in a greenhouse—the Sun’s energy can get in, but the heat cannot get out.  The greenhouse effect has intensified due to the greenhouse gases that are released during our modern industrial processes.  This has caused the Earth’s climate to begin to change.

 

Who contributed to the Climate Science Special Report?

The report was written by members of the American scientific community, including (but not limited to) the National Science Foundation, the National Aeronautics and Space Administration (NASA), the US Army Corps of Engineers, and multiple universities and national labs.  They analyzed data from articles in peer reviewed scientific journals—that is, other scientists read these articles before they were even published to check for questionable experiments, data, or conclusions—as well as government reports and statistics and other scientific assessments.  The authors provided links to each source in citation sections at the end of each chapter. They combined everything they learned into this one comprehensive document, the Climate Science Special Report.

What can we learn from this report?      

First of all, the report reveals that the Earth is getting warmer.  The average global surface temperature has increased about 1.8°F (1.0°C) since 1901.  This may seem like a small change, but this increase in temperature is enough to affect the global climate.  Sea levels have risen about eight inches since 1900, which has led to increased flooding in coastal cities.  Weather patterns have changed, with increased rainfall and heatwaves.  While the increased rainfall has been observed primarily in the Northeastern U.S., the western part of the U.S. has experienced an increase in forest fires, such as those that have devastated California this year.  Such changes in weather patterns can be dangerous for those who live in those areas.  They can even damage infrastructure and affect agriculture, which impacts public health and food production.  These changes mainly result from greenhouse gases, namely CO2, that humans have emitted into the atmosphere.

Where can I go to read the report myself?  

You can find a link to the main page of the report here.  There is also an Executive Summary, which was written for non-scientists.   While the rest of the report contains some technical language, it is generally accessible, and contains visuals to help readers understand the data.  If you are interested in gaining a better understanding of Earth’s climate and how it’s changing, we encourage you to take a look at the Climate Science Special Report to learn more.  

 

Peer edited by Amanda Tapia and Joanna Warren.

Follow us on social media and never miss an article:

Looking for a New Year’s Resolution? Shrink Your Plastic Footprint!

Plastics are nearly unavoidable. From the plastic bottle of water you grab walking into a meeting to the money in your wallet, plastics are ubiquitous. However, evidence is accumulating that heavy plastic use takes a hefty toll on the environment, especially the world’s oceans, which are the repository of nearly 4.8-12.7 million tons of plastic each year (about five bags of plastic for every foot of coastline in the world). Much of this marine plastic comes from litter that washes down storm drains into the oceans, but it can also be blown from landfills to end up in the ocean. Marine wildlife including fish, birds, seals, turtles and whales consume startling amounts of plastics, not only because these plastics look like dinner but because they often smell like it too. Dangers of plastics to marine animals include entanglement and intestinal perforation or blockage which can cause nutrient starvation—marine animals starving on a stomach stuffed with plastic. Researchers estimate that 90% of sea birds and half of all sea turtles have consumed plastics.

https://pixabay.com/en/rubbish-seaside-beach-waste-1576990/

Millions of tons of plastic waste winds up in the ocean each year.

More recently, the alarm has been raised about microplastics, small plastics and plastic fibers less than 5 mm in size. Microplastics can come from the degradation of larger plastics and from washing clothing containing synthetic fibers. Microplastics act like magnets for chemicals the U.S. Environmental Protection Agency (EPA) calls “Persistent Bioaccumulative and Toxic Substances” (PBTs). PBTs build up in the bodies of marine organisms and can harm us when we consume seafood. Though other potential dangers of microplastics to the environment are not clear yet, it has been shown that the decomposition of plastics can release toxic chemicals including bisphenol A (BPA),  a chemical which disrupts hormone balances and may be linked to human health concerns including diabetes, behavioral disorders like ADHD, and cancer. Researchers at the University of Missouri-Columbia have shown that some of the same adverse health effects occur in fish exposed to BPA, indicating a risk to marine food chains and ecosystems.  It is clear that we do not yet know the full impact of plastics in our oceans—but that the dumping of plastic waste into marine ecosystems is not without consequences.

Although some solutions to the plastic crisis have been floated (excuse the pun) including giant plastic-collecting booms which collect large plastic debris in the ocean and plastic-munching bacteria, these approaches are only beginning to be implemented and have limitations. This is where we come in — preventing more plastics from getting into the ocean is an important first step. Simply recycling our plastics may not be enough: one professor of economics cites plastics as one of the least valuable recyclable items due to the high energy and resource costs of processing them. As a result, it is imperative to focus on reducing, rather than recycling plastics.

Here are 100 ways to reduce your plastic use, ranging from reusable coffee cups to making your own deodorant to avoid the use of plastic packaging—an idea that doesn’t stink. Another way to track your plastic use is to accept the Plastic-Free Challenge—a social media challenge that lets you share your commitment to reducing your plastic footprint with all your followers. A good way to get started is to keep track of how much plastic you use and strive to reduce this amount every week. If you want to think bigger than your own plastic footprint, you can call your representatives about measures like plastic bag bans in your city and about funding research for equipping water treatment facilities to deal with microplastic-contaminated effluent. This year, I’ll be making it my New Year’s resolution to reduce my plastic consumption: a small change in habits that can add up. Let’s face it, I was never going to make it to the gym, anyway.

Peer edited by Erica Wood.

Follow us on social media and never miss an article:

Tardigrades! The Super-animal of the Animal Kingdom

https://commons.wikimedia.org/wiki/File:Mikrofoto.de-Baertierchen5.jpg

Tardigrade (aka waterbear or moss piglet)

Tardigrades, also known as waterbears or moss piglets, are microscopic invertebrates that “resemble a cross between a caterpillar and a naked mole rat,” according to science writer, Jason Bittel. First discovered almost 250 years ago, there are now over 1,000 known species of tardigrade that can be found in almost every habitat throughout the world – from the depths of the ocean, to the tops of mountains, to your own backyard. As long as there is a little bit of moisture, you can find them. They are small and chubby, with most species being less than one millimeter in length. Their unique, usually transparent bodies have no specialized organs and four pairs of legs with claws at the end. Tardigrades can reproduce sexually or asexually via self fertilization. Like regular bears, Tardigrades eat a variety of foods, such as plant cells, animal cells and bacteria.

Despite being small, adorable microorganisms, tardigrades are fascinating creatures that have recently garnered the attention of scientists around their world due to their adaptability and resilience towards the most extreme environmental conditions. They have been observed to survive in a vacuum (an environment devoid air and matter) for up to eight days, for years to decades without water, temperatures ranging from under -200˚C to almost 100˚C, and heavy ionizing radiation. Tardigrades survive these conditions through a reversible mechanism known as desiccation (extreme drying), in which an organism loses most of the water in their body. In tardigrades, this can be as high as 97%. This is especially important in freezing temperatures, where water frozen into ice crystals can pierce and rupture the cells in the tardigrades’ body. During desiccation, the metabolic rate slows down to as low as 0.01% of normal function, allowing survival under the harshest of conditions for years.

https://commons.wikimedia.org/wiki/File%3AHypsibiusdujardini.jpg

Scanning Electron Microscopy image of a Tardigrade (Hypsibius dujardini)

In a 2016 Nature paper, scientists sought to answer the question of how a certain specie of tardigrade, Ramazzottius varieornatus, is so tolerant to extreme environmental conditions. They found an increase in several stress-related gene families such as superoxide dismutases (SODs). Most multicellular animals have less than ten SODs, however the study identified sixteen in this tardigrade specie. They also found an increased copy number of a gene known to play an important role in DNA double stranded breaks, MRE11. R. varieornatus had four copies of MRE11 while most other animals have only one.  Aside from having improved mechanisms of handling stress and DNA damage, scientists were able to identify waterbear-specific genes that seemed to explain tardigrades’ radiotolerance, or rather, resistance to radiation. The scientists were curious about whether this tardigrade-specific gene had any effect on DNA protection and radiotolerance in human cells. To their surprise, this gene, called DSUP for DNA damage suppressor, was able to decrease DNA damage in human cultured cells by 40% and decreased both double and single stranded DNA breaks.

At the University of North Carolina at Chapel Hill, Dr. Bob Goldstein studies animal development and cellular mapping during development in C. elegans and recently in tardigrades as well. He is also focusing on developing tardigrades into an new model system while studying their body development! His lab website has a section dedicated to tardigrades, with resources about them along with pictures and videos of tardigrades in motion.

The environmental resilience of tardigrades is incredible, making the tardigrade the super-animal of the animal kingdom (in my opinion). Who knows what other fascinating creatures we have yet to discover that may have characteristics as interesting and unbelievable as those of the tardigrade?

Peer edited by Nick Martinez.

Follow us on social media and never miss an article:

 

Let’s Talk about Pets!

 Photo: Erin Spencer

Meet Marshmallow, an expert snuggler.

I love my pets. Growing up, I always had animals: fish, hamsters, hermit crabs, and even rats (my mom was particularly happy when those were out of the house). The current menagerie includes two cats, two fish, a bearded dragon, and a horse, and two fish.

Pets provide us joy (how many cat videos have you watched today?) and can even help us live longer. And they’re popular: 63% of American households have pets, resulting in more than 360 million pets in the United States alone. Consequently, pets and pet products account for over $40 billion in spending in the United States every year.

If you’re pet-obsessed (like me!), that probably doesn’t come as a surprise. But what might surprise you is that pets can pose a massive threat to our native ecosystems.

Even when people buy animals with the best intentions, a lot of things can change throughout the course of pet ownership. Maybe they realize their hubby is allergic to cats, or that teeny baby turtle outgrew his aquarium. Regardless of the reason, many pet owners will ultimately face a difficult decision: what do you do with a pet you can no longer care for?

Releasing pets into the wild may be considered a “humane” response by unknowing owners (thanks a lot Finding Nemo), but this is problematic for a number of reasons. First, a significant change in environment will likely be stressful for the pet and could lead to death. Second, they might be carrying diseases or pathogens that could spread to native wildlife, which is why even seemingly innocuous actions like flushing a dead fish could be dangerous. Lastly, in the right climate, released pets could establish breeding populations and become invasive.

Photo: Erin Spencer

The lionfish is an invasive species introduced in the Western Atlantic through aquarium releases.

This is more common than you might think. Here are a few examples of released pets becoming invasive pests in the United States:

  • Lionfish: Originally from the Indo-Pacific, these venomous fish are wreaking havoc on native fish populations in the Western Atlantic, Caribbean, and Gulf of Mexico. Considered the “Hoover vacuums of the sea”, lionfish will eat anything up to half their size. Despite being highly invasive, they are still a popular aquarium fish are are sold in the United States.
  • Cats: Your cuddly kittens have a deadly side. Domestic outdoor and feral cats kill a median of 2.4 billion birds and 12.3 billion mammals every year, leading cats to be considered one of the largest human-linked threats to wildlife in the country.
  • Giant African Land Snail: These massive mollusks are one of the world’s largest snails and consume more than 500 types of plants. To top it off, they can damage plaster and stucco structures and can carry a parasitic nematode that causes meningitis in humans.
  • Burmese python:  Reaching up to 23 ft in length, Burmese pythons are some of the largest snakes in the world. Now an invasive species established throughout South Florida, Burmese pythons pose a serious risk to native wildlife and domestic pets. More than 2,000 pythons have been removed from the Everglades National Park since 2002, a figure that likely represents a small fraction of the population.

And the list goes on (check out this site if you want to read more). Thankfully, there are definitive steps that we can take as pet owners to make sure we aren’t contributing to this massive problem.

  1. First and foremost: never, ever release your pets into the wild.
  2. Keep your pet in appropriate housing to minimize chances of escaping.
  3. Properly dispose of materials in your pet’s habitat, including bedding, tank water, terrarium plants, and anything that might carry pathogens or “hitchhikers” from your pet.
  4. Never release live pet food like crickets or feeder fish. Always make sure these animals are kept in secure containers so they cannot escape.
  5. Thoroughly do your research before buying a pet. Ask how care will change as the pet gets older to make sure you’re equipped to take care of the animal throughout its lifetime.
  6. Ask your pet store about their return policy — some stores will take animals back past the normal 30 day return period.

Invasive species are a massive threat to ecosystems and economies worldwide, costing $120 billion in damages each year in the United States alone. We all need to do our part to prevent the next big species invasion by practicing responsible pet ownership.

The environment (and your pets!) will thank you.

Photo: Erin Spencer

Dracarys is perfectly happy in his aquarium, thank you very much.

Peer edited by James Custer.

Follow us on social media and never miss an article:

Burn Baby Burn! For the Longleaf Pines

The recent forest fires have been wreaking havoc across California since early October. In fact, destructive wildfires are a frequent occurrence in the dry, western state. Such fires are generally bad news as they cause destruction of property and affect air quality. However, are they always bad? Interestingly, the answer is no.

Wildfires can be an intricate part of a forest’s natural cycle, and may even help its survival. One such example lies in front of our eyes in the state of North Carolina, where the longleaf pine finds its home.

Longleaf pine forests across the Southeastern United States are one of the most diverse environmental systems in North America. At one point in time, they covered about ninety million acres of land which, unfortunately, has decreased to only about three million acres. Human development and exclusion of fires by human effort are largely responsible for this decline. Longleaf pines are adapted to fire cycles; preventing fires actually hurts the health of the forest. Native Americans realized this correlation and rarely intervened whenever lightning induced fires, which were common events in the Sandhills region, a major home of the longleaf pines located in North Carolina, South Carolina, and Georgia.When the early European settlers came over, they realized the potential of pine resin in shipbuilding. Very soon, North Carolina’s pine forests became a supply line of naval stores for the UK’s Royal Navy. These early settlers however still continued to burn fires like the natives and thereby contributed to the health of the ecosystem. It was only with growth in plantation forestry came an urge to desperately eliminate fires.

Photo taken by Manisit Das

Longleaf pines, in their sparkling green glory. Weymouth Woods, Southern Pines, NC

The Sandhills region is home to about a thousand different plant species, the dominant species being the longleaf pines. With their long needles, the pines produce a bright, shiny green canopy growing atop massively tall trunks.Additionally, the forests support a wide variety of animals amounting to 160 different species of birds, including the endangered red-cockaded woodpeckers, a large number of salamanders, toads, frogs, the hognose snakes, and fox squirrels, and many other species.  In the twentieth century, firefighting prevented the regeneration of longleaf pines, providing non-fire resistant species a competitive edge. That, coupled with increasing human settlement, reduced longleaf pine forest covers. In 1963, the remnants of the natural home of the longleaf pines were brought under the state parks system when Weymouth Woods was established. Since then, simulated prescribed fires are used systematically as a conservation tool to restore and maintain the longleaf pines.

An unexpected player in the conservation effort is the US military. The military base Fort Bragg, bordering the towns of Fayetteville and Southern Pines in North Carolina, is home to some of the world’s largest biodiversity reserves. The army recognizes that maintenance of the natural environment is crucial. The live ammunition exercises conducted by the military in this base already help protect many of the plant species, some of which are exclusive to Fort Bragg. If these rare plants are not preserved, most of the world’s populations of these species will be lost. Understanding the need of the hour, the military installation is taking one further step: in collaboration with the North Carolina Botanical Garden, they have launched an effort to reintroduce some of the plant species at risk into the Sandhills ecosystem.

Weymouth Woods Sandhills Nature Preserve, a North Carolina State Park in the Moore County around Fort Bragg, offers a great snapshot of the magnificent pine forests that once covered the southeastern United States. During my visit, I was surprised by the wide variety of wildlife I encountered within a short period along the sandy trails. This included a large number of dragonflies, skinks, a moccasin, and not to mention the diversity of plants that coexist in the Sandhills pine forests. If you are intrigued by the unique nature and ecology of the longleaf pines, their role in North Carolina’s history, or simply take pride in being a ‘Tar Heel’, I definitely recommend visiting this place. You will not be disappointed in this treasure trove of nature.

Peer edited by Caitlyn Molloy.

Follow us on social media and never miss an article:

How’s that Nanoparticle Biocorona treating you??

No, sorry, it’s not the latest variety of Corona beer. Rather, it is a new exciting advance in understanding nanoparticle toxicity!

Nano-everywhere!

 ©2006 David Hawxhurst, Woodrow Wilson International Center for Scholars

Nanoparticles are found in lots of consumer products!

Nanoparticles are any really really small particles in the nanometer range (1-100 nanometers). For size comparison, the thickness of normal hair is 80,000 nanometers. Because they have different chemical and physical properties compared to larger particles, nanoparticles are already being used in numerous capacities. They are used to produce lightweight but strong materials for use in airplanes, in clothes to kill bacteria, in food packaging to promote shelf life, and in sunblock to improve UV protection. Much research is ongoing to include nanomaterials in medicine, such as to treat cancer and to improve medical imaging.

Though nanoparticles are becoming widely used in consumer products and there is increasing development of nanomedicine, our understanding of how nanoparticle exposure affects human health is struggling to keep up. Thus far, researchers thought that nanoparticle toxicity was dependent primarily on physical or chemical properties, like composition (silver vs. iron) or size. However, recent findings indicate that it might not be that simple.

The Biocorona

When nanoparticles come into contact with biological materials (for instance, the blood), proteins and other molecules are naturally attracted to its surface and begin to form layers around the nanoparticle. This biological coating is known as a biocorona. Thus, when the body is exposed to nanoparticles, it is likely encountering nanoparticles with a specific biocorona that has formed on it, not just the nanoparticle itself. Different biocoronas on the same type of nanoparticle can affect not only the particle’s chemical properties but also how it’s distributed throughout the body, how it’s eliminated from the body, and how the body reacts to it.

Dr. Jonathan Shannahan at Purdue University is one of many researchers trying to better understand how nanoparticles interact with the human body and the role of the biocorona in modifying toxicity.

Nanoparticle Meets Heart Disease

Recently, Dr. Shannahan’s team published a paper on how cardiovascular disease states can affect iron nanoparticle biocoronas and toxicity. Iron nanoparticles are being developed for use in medical imaging and cancer drug delivery, so it is important to better understand their potential toxic side effects in humans. Many of the current iron nanoparticle toxicity studies have been designed to represent how a healthy individual would react. However, 1 in 4 people in America die from cardiovascular disease each year and 31% of Americans have high levels of cholesterol in their blood, a high risk factor for cardiovascular disease. The toxicity studies we have now do not capture the effects of nanoparticles in a significant portion of the population, people with or at high risk of developing heart disease. These people may also use iron nanoparticle therapies and diagnostic tools so it is essential to study how people with these underlying disease states would react.

Courtesy of Dr. Jonathan Shannahan

Iron nanoparticles form different biocoronas when incubated with different kinds of serum (normal vs. hyperlipidemic) which generate different responses by the body.

To simulate normal and heart disease conditions in their experiment, Shannahan’s team incubated iron nanoparticles with blood serum from normal rats and rats with high blood levels of cholesterols (think LDL) and lipids, termed hyperlipidemic serum. They found that the nanoparticle biocorona changed when incubated in hyperlipidemic serum and that nanoparticles with a hyperlipidemic biocorona stimulated more of an immune response in cells that line the arteries! An increased immune response facilitates the formation of plaques in the arteries, which eventually could cause blockage of blood flow to the heart, leading to heart attacks.

Shannahan’s findings suggest that individuals with high blood cholesterol and/or heart disease may be more susceptible to the toxic effects of iron nanoparticles, i.e. they could have a worse reaction to iron nanoparticles than healthy individuals, and that this toxicity is driven by a change in the nanoparticle’s biocorona.

“King me.” – Nanoparticlenanoparticle

The discovery of this biological “crown” on nanoparticles and its ability to affect toxicity adds another piece to the complex puzzle of how to evaluate nanoparticle toxicity in humans. Such studies will only become more important as nanoparticles become more widely used in consumer products and, potentially, in modern medicine. Genetics, epigenetics, nutrition, environmental exposures, and now biocoronas will all play into the important quest to understand the toxicity of nanoparticles among the general population as well as for each individual.

Peer edited by Aminah Wali.

Follow us on social media and never miss an article:

Toad-ally Accurate Predictions?

Today, groundhogs tell us if there will be six more weeks of winter or an early spring. Soon, puppies will be unleashed to help predict the Super Bowl winner. But have you ever considered looking to toads in order to forecast earthquakes?

Animals and Earthquakes

For centuries, there have been reports of animals acting strangely before an earthquake. From ancient Greece to the modern day Bay Area, people have observed rats, snakes, and dogs leaving their normal habitats for safe shelter in the days leading up to an earthquake. Currently, seismologists do not have a way to accurately predict earthquakes, so these animals may provide some clues. One Japanese doctor claimed that earthquakes could be predicted by unusual dog behavior, like an increase in barking or biting. Despite continued research efforts in Japan and China, countries often hit by devastating earthquakes, no consistent relationship between animal behavior and earthquakes has been seen.

Toad-ally New Connection

https://commons.wikimedia.org/wiki/File:Bufo_bufo_04_13Jul2009.jpg

The humble toad, Bufo bufo, holds some promise for detecting pre-seismic changes and alerting us of imminent earthquakes.

The observation of odd toad behavior before an earthquake was published in the Journal of Zoology in 2010. Rachel Grant of Open University was studying the how the lunar cycle impacted toad behavior and reproduction in L’Aquilla, Italy when one day, she noticed there were suddenly no toads at the breeding site. Such behavior was extremely odd in the middle of mating season since toads do not leave until breeding is completed. A 6.3 magnitude earthquake occurred in the area days later and the toads started returning the day after the earthquake.

Grant was curious about what cues the toads were responding to when they departed the breeding site. She found reports that there had been changes in the ionosphere, which is the upper layer of Earth’s atmosphere, leading up to the earthquake. These changes are common before earthquakes and lead to a lot of gases being released into the atmosphere, which could change the water chemistry of the toad habitat. Toads and other amphibians are very sensitive to such changes, so this disruption may explain their sudden departure.

While intriguing, more work will need to be done to take this study from a well-documented anecdote to a reliable method for predicting earthquakes. A similar mass migration of toads was seen in 2008 before a large earthquake in China, but all of these results will have to be replicated at these site and others, which will be difficult due to how rare and unpredictable earthquakes are. But in the meantime, if you see a mass exodus of toads, it might not be a bad idea to follow them.

Peer edited by Madelyn Huang.

Follow us on social media and never miss an article:

Does this chemical make me look fat?: Secret suspects in the obesity epidemic

Over a third of the adult population in America is obese (Body Mass Index (BMI) ≥ 30) and an additional 40% are classified as overweight (BMI 25-30). Within the past ten years, this rate has increased significantly. Obesity increases risk of cardiovascular disease, type 2 diabetes, and some cancers. According to some estimates, the medical costs of an obese person is $1429 more than a person of normal weight. While exercise and diet are very important factors that regulate a person’s weight/obesity, there may be something else interfering with the body’s natural weight regulating processes: obesogens.

Adapted from Wikimedia (https://commons.wikimedia.org/wiki/File:USA_Obesity_1998.svg and https://en.wikipedia.org/wiki/Obesity_in_the_United_States#/media/File:USA_Obesity_2011.svg)

Obesity is increasing in the USA and worldwide. Map generated from data from the US Center for Disease Control and Prevention.

Coined in 2006, the term “obesogens” refer to chemicals that may predispose an individual to gaining weight. Scientists have observed that numerous chemicals caused weight gain and obesity in animal studies, including tributyltin (pesticide), BPA (in plastics), phthalates (in plastics), PBDEs (flame retardants), and fructose (in diet). Persistent exposures to these chemicals in adult and particularly in early life, even in small doses, can have lifelong implications.

Since the field of obesogens is relatively new, how these chemicals affect obesity is still being discovered. Some chemicals act by reprogramming stem cells to differentiate into fat cells, thus increasing the number of fat cells in an individual. This number contributes to determination of the metabolic set point of an individual, or the set weight that the body is programmed to maintain.  Fat cells also secrete hormonal signals that affect metabolic regulation throughout the body, such as leptin. These hormonal signals also influence neurological signals in the brain that control feeding and satiety. In addition to increasing the number of fat cells, obesogens may also target metabolism and the brain directly.

Some obesogens have transgenerational effects, where an effect of an exposure is seen in a generation that has had no direct exposure to the chemical.  Researchers are finding that when animals are exposed to these chemicals, effects can be seen in their offspring and even the third generation!  In other words, the effects of exposure to these obesogens may be heritable. These fattening signals could be passed on through genes or through epigenetic markers.

If the pregnant mother (zeroth generation, F0) is exposed, then the fetus (1st generation, F1) and the fetus’ germline (future baby in the baby of the exposed mother, 2nd generation, F2) are also exposed. Thus, the chemical itself could be causing obesity in these generations. However, the third generation (F3) will not have had any exposure but the effects of some obesogens are still observed!

Obesity is a growing public health problem with serious health consequences. Increasing scientific evidence supports the idea that obesogens may be predisposing people to becoming obese. The transgenerational effects of obesogens highlights the importance and urgency of this kind of research, in order to protect not only the pregnant mother and her child, but also the third generation and beyond. Continued research in this field, mostly funded through the National Institute of Environmental Health Sciences, will support the establishment of policies that would regulate production and exposure to these chemicals. In the meantime, while obesogens might play their part, we also need to play ours. We should strive to maintain healthy lifestyles and eating habits, which are well-known methods to improve health.

Peer edited by Joanna Warren

Follow us on social media and never miss an article: